Home
Class 12
PHYSICS
The position vectors of points A, B , C ...

The position vectors of points A, B , C and D are `vec(A) = 3hat(i) + 4hat(j) + 5hat(k), vec(B) = 4hat(i)+5hat(j) + 6hat(k), vec(C )= 7hat(i) + 9hat(j) + 3hat(k)` and `vec(D) = 4hat(i) + 6hat(j)` then the displacement vectors `bar(AB)` and `bar(CD)` are :

A

perpendicular

B

Parallel

C

Antiparallel

D

Inclined at an angle of `60^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the displacement vectors \(\vec{AB}\) and \(\vec{CD}\) based on the given position vectors of points A, B, C, and D. ### Step 1: Write down the position vectors We have the following position vectors: - \(\vec{A} = 3\hat{i} + 4\hat{j} + 5\hat{k}\) - \(\vec{B} = 4\hat{i} + 5\hat{j} + 6\hat{k}\) - \(\vec{C} = 7\hat{i} + 9\hat{j} + 3\hat{k}\) - \(\vec{D} = 4\hat{i} + 6\hat{j}\) ### Step 2: Calculate the displacement vector \(\vec{AB}\) The displacement vector \(\vec{AB}\) is given by: \[ \vec{AB} = \vec{B} - \vec{A} \] Substituting the position vectors: \[ \vec{AB} = (4\hat{i} + 5\hat{j} + 6\hat{k}) - (3\hat{i} + 4\hat{j} + 5\hat{k}) \] Now, perform the subtraction: \[ \vec{AB} = (4 - 3)\hat{i} + (5 - 4)\hat{j} + (6 - 5)\hat{k} \] This simplifies to: \[ \vec{AB} = 1\hat{i} + 1\hat{j} + 1\hat{k} = \hat{i} + \hat{j} + \hat{k} \] ### Step 3: Calculate the displacement vector \(\vec{CD}\) The displacement vector \(\vec{CD}\) is given by: \[ \vec{CD} = \vec{D} - \vec{C} \] Substituting the position vectors: \[ \vec{CD} = (4\hat{i} + 6\hat{j}) - (7\hat{i} + 9\hat{j} + 3\hat{k}) \] Now, perform the subtraction: \[ \vec{CD} = (4 - 7)\hat{i} + (6 - 9)\hat{j} + (0 - 3)\hat{k} \] This simplifies to: \[ \vec{CD} = -3\hat{i} - 3\hat{j} - 3\hat{k} = -3(\hat{i} + \hat{j} + \hat{k}) \] ### Step 4: Final results Thus, the displacement vectors are: \[ \vec{AB} = \hat{i} + \hat{j} + \hat{k} \] \[ \vec{CD} = -3(\hat{i} + \hat{j} + \hat{k}) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The position vectors of points A, B, C and D are : vec(A) = 3hat(i) + 4hat(j) + 5hat(k), vec(B) = 4hat(i) + 5hat(j) + 6hat(k) vec(C ) = 7hat(i) + 9hat(j) + 3hat(k) and vec(D) = 4hat(i) + 6hat(j) Then the displacement vectors vec(AB) and vec(CD) are :

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the sum of the vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) , and vec(c )=hat(i)-6hat(j)-7hat(k) .

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

If vec(A)=-2hat(i)+3hat(j)-4hat(k)and vec(B)=3hat(i)-4hat(j)+5hat(k) then vec(A)xxvec(B) is

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

The angle between two vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)+5hat(k) is