Home
Class 12
PHYSICS
IF vec(A) = 5hat(i) + 12hat(j) and vec(B...

IF `vec(A) = 5hat(i) + 12hat(j)` and `vec(B) = 3hat(i) + 4hat(j)`, find component of `vec(A)` in the direction of `vec(B)`.

A

`(63)/(5)(5hat(i) + 12hat(j))`

B

`(32)/(25)(3hat(i) + 4hat(j))`

C

`(63)/(25)(3hat(i) + 4hat(j))`

D

`(63)/(25)(3hat(i) - 4hat(j))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the component of vector \(\vec{A}\) in the direction of vector \(\vec{B}\), we can use the formula for the projection of one vector onto another. The formula is given by: \[ \text{Component of } \vec{A} \text{ in the direction of } \vec{B} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|^2} \vec{B} \] ### Step 1: Calculate the dot product \(\vec{A} \cdot \vec{B}\) Given: \[ \vec{A} = 5\hat{i} + 12\hat{j} \] \[ \vec{B} = 3\hat{i} + 4\hat{j} \] The dot product \(\vec{A} \cdot \vec{B}\) is calculated as follows: \[ \vec{A} \cdot \vec{B} = (5\hat{i} + 12\hat{j}) \cdot (3\hat{i} + 4\hat{j}) = 5 \cdot 3 + 12 \cdot 4 = 15 + 48 = 63 \] ### Step 2: Calculate the magnitude of \(\vec{B}\) The magnitude of \(\vec{B}\) is given by: \[ |\vec{B}| = \sqrt{(3^2 + 4^2)} = \sqrt{9 + 16} = \sqrt{25} = 5 \] ### Step 3: Calculate \(|\vec{B}|^2\) Now, we calculate \(|\vec{B}|^2\): \[ |\vec{B}|^2 = 5^2 = 25 \] ### Step 4: Substitute values into the projection formula Now we substitute the values into the projection formula: \[ \text{Component of } \vec{A} \text{ in the direction of } \vec{B} = \frac{63}{25} \vec{B} \] Substituting \(\vec{B}\): \[ \text{Component of } \vec{A} \text{ in the direction of } \vec{B} = \frac{63}{25} (3\hat{i} + 4\hat{j}) \] ### Step 5: Distributing the scalar Distributing \(\frac{63}{25}\): \[ \text{Component of } \vec{A} \text{ in the direction of } \vec{B} = \left(\frac{63 \cdot 3}{25}\right) \hat{i} + \left(\frac{63 \cdot 4}{25}\right) \hat{j} \] \[ = \frac{189}{25} \hat{i} + \frac{252}{25} \hat{j} \] ### Final Answer Thus, the component of vector \(\vec{A}\) in the direction of vector \(\vec{B}\) is: \[ \frac{189}{25} \hat{i} + \frac{252}{25} \hat{j} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(A) = 3 hat(i) - 4 hat(j) and vec(B) = 2 hat(i) + 16 hat(j) then the magnitude and direction of vec(A) + vec(B) will be

If vec(A)=2hat(i)+hat(j) and vec(B)=hat(i)-hat(j) , sketch vector graphically and find the component of vec(A) along vec(B) and perpendicular to vec(B)

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(A)=4hat(i)-3hat(j) and vec(B)=6hat(i)+8hat(j) ,then find the magnitude and direction of vec(A)+vec(B) .

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(a) = 5 hat(i) - hat(j) - 3 hat(k) and vec(b) = hat(i) + 3 hat(j) - 5 hat(k) , find the angle between vec(a) and vec(b) .

If vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + hat(k) , then projection of vec(a) on vec(b) is

Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = hat(i) + 5hat(j) and vec(c) = 4hat(i) + 4hat(j) - 2hat(k) . The projection of the vector 3vec(a) - 2vec(b) on the vector vec(c) is