Home
Class 12
PHYSICS
Let vec(A)=2hat(i)+hat(j),B=3hat(j)-hat(...

Let `vec(A)=2hat(i)+hat(j),B=3hat(j)-hat(k)` and `vec(C )=6hat(i)-2hat(k)`. Find the value of `vec(A)-2vec(B)+3vec(C )`.

A

`20 hat(i)+ 5hat(j) + 4hat(k)`

B

`20 hat(i)- 5hat(j) - 4hat(k)`

C

`4 hat(i)+ 5hat(j) + 20hat(k)`

D

`5 hat(i)+ 4hat(j) + 10hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

Given the vectors vec(A)=2hat(i)+3hat(j)-hat(k) vec(B)=3hat(i)-2hat(j)-2hat(k) & " " vec(c)=phat(i)+phat(j)+2phat(k) Find the angle between (vec(A)-vec(B)) & vec(C)

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

Let vec(A)=2hat(i)-3hat(j)+4hat(k) and vec(B)=4hat(i)+hat(j)+2hat(k) then |vec(A)xx vec(B)| is equal to

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is