Home
Class 12
PHYSICS
If vec(A) = 4hat(i) - 2hat(j) + 6hat(k) ...

If `vec(A) = 4hat(i) - 2hat(j) + 6hat(k)` and `B = hat(i) - 2hat(j) - 3hat(k)` the angle which the `vec(A) vec(B)` makes with x-axis is :

A

`cos^(-1)((1)/(10))`

B

`cos^(-1)((2)/(sqrt(10)))`

C

`cos^(-1)((1)/(sqrt(10)))`

D

`cos^(-1)((1)/(5))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle that the vector \( \vec{A} \) makes with the x-axis, we will follow these steps: ### Step 1: Identify the vectors Given: \[ \vec{A} = 4\hat{i} - 2\hat{j} + 6\hat{k} \] \[ \vec{B} = \hat{i} - 2\hat{j} - 3\hat{k} \] ### Step 2: Calculate the resultant vector \( \vec{AB} \) We need to find the vector \( \vec{AB} \) which is given by: \[ \vec{AB} = \vec{A} - \vec{B} \] Calculating \( \vec{AB} \): \[ \vec{AB} = (4\hat{i} - 2\hat{j} + 6\hat{k}) - (\hat{i} - 2\hat{j} - 3\hat{k}) \] \[ = (4 - 1)\hat{i} + (-2 + 2)\hat{j} + (6 + 3)\hat{k} \] \[ = 3\hat{i} + 0\hat{j} + 9\hat{k} \] Thus, \[ \vec{AB} = 3\hat{i} + 9\hat{k} \] ### Step 3: Find the magnitude of \( \vec{AB} \) The magnitude of \( \vec{AB} \) is given by: \[ |\vec{AB}| = \sqrt{(3)^2 + (0)^2 + (9)^2} = \sqrt{9 + 0 + 81} = \sqrt{90} = 3\sqrt{10} \] ### Step 4: Find the dot product with the x-axis vector The unit vector along the x-axis is \( \hat{i} \). The dot product of \( \vec{AB} \) and \( \hat{i} \) is: \[ \vec{AB} \cdot \hat{i} = (3\hat{i} + 0\hat{j} + 9\hat{k}) \cdot \hat{i} = 3 \] ### Step 5: Use the dot product to find the angle The formula for the dot product is: \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos(\theta) \] Here, since we are taking the dot product with \( \hat{i} \): \[ 3 = |\vec{AB}| \cdot 1 \cdot \cos(\theta) \] Substituting the magnitude: \[ 3 = (3\sqrt{10}) \cos(\theta) \] Thus, \[ \cos(\theta) = \frac{3}{3\sqrt{10}} = \frac{1}{\sqrt{10}} \] ### Step 6: Find the angle \( \theta \) To find \( \theta \): \[ \theta = \cos^{-1}\left(\frac{1}{\sqrt{10}}\right) \] ### Final Result The angle that the vector \( \vec{A} \) makes with the x-axis is: \[ \theta = \cos^{-1}\left(\frac{1}{\sqrt{10}}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4hat(i) - 2hat(j) + 6hat(k) . The angle made by (A+B) with x-axis is :

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

vec(A)=(hat(i)-2hat(j)+6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) , find the cross product between vec(A) and vec(B) .

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)