Home
Class 12
PHYSICS
Projection of the vector 2hat(i) + 3hat(...

Projection of the vector `2hat(i) + 3hat(j) + 2hat(k)` on the vector `hat(i) - 2hat(j) + 3hat(k)` is :

A

`(2)/(sqrt(14))`

B

`(1)/(sqrt(14))`

C

`(3)/(sqrt(17))`

D

`(3)/(sqrt(14))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \( \mathbf{A} = 2\hat{i} + 3\hat{j} + 2\hat{k} \) on the vector \( \mathbf{B} = \hat{i} - 2\hat{j} + 3\hat{k} \), we can use the formula for the projection of vector \( \mathbf{A} \) onto vector \( \mathbf{B} \): \[ \text{Projection of } \mathbf{A} \text{ on } \mathbf{B} = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{B}|^2} \mathbf{B} \] ### Step 1: Calculate the dot product \( \mathbf{A} \cdot \mathbf{B} \) The dot product of two vectors \( \mathbf{A} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k} \) and \( \mathbf{B} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k} \) is given by: \[ \mathbf{A} \cdot \mathbf{B} = a_1b_1 + a_2b_2 + a_3b_3 \] For our vectors: - \( \mathbf{A} = 2\hat{i} + 3\hat{j} + 2\hat{k} \) (where \( a_1 = 2, a_2 = 3, a_3 = 2 \)) - \( \mathbf{B} = \hat{i} - 2\hat{j} + 3\hat{k} \) (where \( b_1 = 1, b_2 = -2, b_3 = 3 \)) Calculating the dot product: \[ \mathbf{A} \cdot \mathbf{B} = (2)(1) + (3)(-2) + (2)(3) = 2 - 6 + 6 = 2 \] ### Step 2: Calculate the magnitude squared of vector \( \mathbf{B} \) The magnitude of vector \( \mathbf{B} \) is given by: \[ |\mathbf{B}| = \sqrt{b_1^2 + b_2^2 + b_3^2} \] Calculating \( |\mathbf{B}|^2 \): \[ |\mathbf{B}|^2 = 1^2 + (-2)^2 + 3^2 = 1 + 4 + 9 = 14 \] ### Step 3: Substitute into the projection formula Now we can substitute the values we found into the projection formula: \[ \text{Projection of } \mathbf{A} \text{ on } \mathbf{B} = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{B}|^2} \mathbf{B} = \frac{2}{14} \mathbf{B} = \frac{1}{7} \mathbf{B} \] ### Step 4: Write the final answer Substituting \( \mathbf{B} \): \[ \text{Projection of } \mathbf{A} \text{ on } \mathbf{B} = \frac{1}{7} (\hat{i} - 2\hat{j} + 3\hat{k}) = \frac{1}{7}\hat{i} - \frac{2}{7}\hat{j} + \frac{3}{7}\hat{k} \] Thus, the projection of the vector \( 2\hat{i} + 3\hat{j} + 2\hat{k} \) on the vector \( \hat{i} - 2\hat{j} + 3\hat{k} \) is: \[ \frac{1}{7}\hat{i} - \frac{2}{7}\hat{j} + \frac{3}{7}\hat{k} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the projection of the vector hat(i)-2 hat(j) + hat(k) on the vector 4hat(i) - 4hat(j)+ 7hat(k) ?

What is the projection of the vector hat(i)-2hat(j)-hat(k) on the vector 4hat(i)-4hat(j)+7hat(k) ?

A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + hat(k ) and 3hat(i) - 4hat(i) - hat(k) is

Find the projection of the vector hat i+3hat j+7hat k on the vector 7hat i-hat j+8hat k

What is the value of b such that the scalar product of the vector hat(i) + hat(j) + hat(k) with the unit vector parallel to the sum of the vectors 2hat(i) + 4hat(j)-5hat(k) and b hat(i) + 2hat(j) + 3hat(k) is unity ?

Find the projection of the vector hat i+3hat j+7hat k on the vector 2hat i-3hat j+6hat k

The projection of vector vec(a)=2hat(i)+3hat(j)+2hat(k) on vec(b)=hat(i)+2hat(j)+hat(k) is :

Find the vector projection of the vector : 2hat(i)-hat(j)+hat(k) on hat(i)-2hat(j)+hat(k) .

Find the projection of vector hat i+3hat j+7hat k on the vector 7hat i-hat j+8hat k

Find a unit vector perpendicular to each of the vectors hat(i)+2hat(j)-3hat(k) and hat(i)-2hat(j)+hat(k) .