Home
Class 12
PHYSICS
ABCDEF is a regular hexagon with point O...

ABCDEF is a regular hexagon with point O as centre. The value of `vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)` is

A

Zero

B

`2 vec(AO)`

C

`4vec(AO)`

D

`6vec(AO)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

ABCDEF is a regular hexagon, Fig. 2 (c ) .65. What is the value of (vec (AB) + vec (AC) + vec (AD) + vec (AE) + vec (AF) ? .

In Fig. ABCDEF is a ragular hexagon. Prove that vec(AB) +vec(AC) +vec(AD) +vec(AE) +vec(AF) = 6 vec(AO) .

ABCDEF is a regular hexagon with centre a the origin such that vec(AB)+vec(EB)+vec(FC)= lamda vec(ED) then lamda = (A) 2 (B) 4 (C) 6 (D) 3

If ABCDEF is a regular hexagon with vec AB=vec a and vec BC=vec b, then vec CE equals

ABCDEF is a regular hexagon. Show that : vec(OA)+vec(OB)+vec(OC)+vec(OD)+vec(OE)+vec(OF)=vec(0)

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

If ABCDEF is a regular hexagon inscribed in a ( circle with centre O, then the value of )/(AB)+bar(AC)+bar(AD)+( then the value of )/(AF) equals

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)