Home
Class 12
PHYSICS
IF y = (1)/(2) sin x^(2), (dy)/(dx) will...

IF `y = (1)/(2) sin x^(2), (dy)/(dx)` will be :

A

`(1)/(2) cos x^(2)`

B

`x cos x^(2)`

C

`(1)/(2) x^(2) cos x^(2)`

D

`sin x`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \frac{1}{2} \sin(x^2)\), we will use the chain rule of differentiation. Here’s a step-by-step solution: ### Step 1: Identify the outer and inner functions In the expression \(y = \frac{1}{2} \sin(x^2)\), we can identify: - The outer function: \(u = \sin(v)\) where \(v = x^2\) - The inner function: \(v = x^2\) ### Step 2: Differentiate the outer function The derivative of the outer function \(u = \sin(v)\) with respect to \(v\) is: \[ \frac{du}{dv} = \cos(v) \] ### Step 3: Differentiate the inner function Now, we differentiate the inner function \(v = x^2\) with respect to \(x\): \[ \frac{dv}{dx} = 2x \] ### Step 4: Apply the chain rule According to the chain rule: \[ \frac{dy}{dx} = \frac{du}{dv} \cdot \frac{dv}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \cos(v) \cdot 2x \] ### Step 5: Substitute back the inner function Now we substitute \(v = x^2\) back into the equation: \[ \frac{dy}{dx} = \cos(x^2) \cdot 2x \] ### Step 6: Include the constant factor Since we have a constant factor of \(\frac{1}{2}\) in the original function, we multiply the result by \(\frac{1}{2}\): \[ \frac{dy}{dx} = \frac{1}{2} \cdot 2x \cos(x^2) = x \cos(x^2) \] ### Final Answer: Thus, the derivative of \(y\) with respect to \(x\) is: \[ \frac{dy}{dx} = x \cos(x^2) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

y= sin(x^(2)) , Find (dy)/(dx)

If y =sin (x^(2) +x) ,then (dy)/(dx) =

If y= sin (x^(2) +5) , then (dy)/(dx) =

If y= sin(x^(2)) , Find (dy)/(dx)

sin x(dy)/(dx)+y=y^(2)

If y=cos^(-1) (sin x^(2)),"then " (dy)/(dx)=

y=sin ^(-1) (1-2x ^(2)),then (dy)/(dx)=

If y=sin(2 sin^(-1)x) , then (dy)/(dx) =