Home
Class 12
PHYSICS
Find our value of I = int(-pi//2)^(pi//2...

Find our value of `I = int_(-pi//2)^(pi//2) sin 2x dx` :

A

0

B

`-1`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(2x) \, dx \), we can follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(2x) \, dx \] ### Step 2: Find the antiderivative The integral of \(\sin(2x)\) can be computed using the formula for the integral of sine. The antiderivative of \(\sin(kx)\) is \(-\frac{1}{k} \cos(kx)\). Here, \(k = 2\): \[ \int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) + C \] ### Step 3: Evaluate the definite integral Now we will evaluate the definite integral from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\): \[ I = \left[-\frac{1}{2} \cos(2x)\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \] ### Step 4: Substitute the limits Now, we substitute the upper and lower limits into the antiderivative: 1. For the upper limit \(x = \frac{\pi}{2}\): \[ -\frac{1}{2} \cos(2 \cdot \frac{\pi}{2}) = -\frac{1}{2} \cos(\pi) = -\frac{1}{2} \cdot (-1) = \frac{1}{2} \] 2. For the lower limit \(x = -\frac{\pi}{2}\): \[ -\frac{1}{2} \cos(2 \cdot -\frac{\pi}{2}) = -\frac{1}{2} \cos(-\pi) = -\frac{1}{2} \cdot (-1) = \frac{1}{2} \] ### Step 5: Calculate the result Now, we can find \(I\): \[ I = \frac{1}{2} - \frac{1}{2} = 0 \] ### Final Result Thus, the value of the integral is: \[ I = 0 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi/2)^(pi/2) sin^(2) x dx

int_(-pi/2)^(pi/2) sin^(7) x dx

int_(-pi/2)^(pi/2)sin^(9) x dx

int_(-pi//2)^(pi//2)sin^(7)x dx=

int_(-pi//2)^(pi//2)sin (|x|)dx=

The value of l = int _(-pi//2)^(pi//2) | sin x | dx is

Evaluate : int_(-pi//2)^(pi//2) |sin x|dx

Evaluate int _(-pi//2)^(pi//4) sin ^(2) x dx .

Evaluate: int_(-pi//2)^(pi//2)sin^2x\ dx