Home
Class 12
PHYSICS
If vec(A) = 3hat(i) - 4hat(j) + hat(k) a...

If `vec(A) = 3hat(i) - 4hat(j) + hat(k)` and `vec(B) = 4hat(j) + phat(i) + hat(k)` for what value of p, `vec(A)` and `vec(B)` will ve collinear ?

A

3

B

`-5`

C

`-(16)/(3)`

D

`vec(A)` and `vec(B)` cannot be collinear

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( p \) for which the vectors \( \vec{A} \) and \( \vec{B} \) are collinear, we can use the property that two vectors are collinear if their cross product is zero. Given: \[ \vec{A} = 3\hat{i} - 4\hat{j} + \hat{k} \] \[ \vec{B} = p\hat{i} + 4\hat{j} + \hat{k} \] ### Step 1: Set up the cross product The cross product \( \vec{A} \times \vec{B} \) can be calculated using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of \( \vec{A} \) and \( \vec{B} \). \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -4 & 1 \\ p & 4 & 1 \end{vmatrix} \] ### Step 2: Calculate the determinant To calculate the determinant, we expand it as follows: \[ \vec{A} \times \vec{B} = \hat{i} \begin{vmatrix} -4 & 1 \\ 4 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 1 \\ p & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -4 \\ p & 4 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} -4 & 1 \\ 4 & 1 \end{vmatrix} = (-4)(1) - (1)(4) = -4 - 4 = -8 \] 2. For \( -\hat{j} \): \[ \begin{vmatrix} 3 & 1 \\ p & 1 \end{vmatrix} = (3)(1) - (1)(p) = 3 - p \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 3 & -4 \\ p & 4 \end{vmatrix} = (3)(4) - (-4)(p) = 12 + 4p \] Putting it all together: \[ \vec{A} \times \vec{B} = -8\hat{i} - (3 - p)\hat{j} + (12 + 4p)\hat{k} \] ### Step 3: Set the cross product equal to zero For the vectors to be collinear, the cross product must equal zero: \[ -8\hat{i} - (3 - p)\hat{j} + (12 + 4p)\hat{k} = 0 \] This gives us three equations: 1. From the \( \hat{i} \) component: \( -8 = 0 \) (This cannot be satisfied) 2. From the \( \hat{j} \) component: \( 3 - p = 0 \) 3. From the \( \hat{k} \) component: \( 12 + 4p = 0 \) ### Step 4: Solve the equations From the second equation: \[ 3 - p = 0 \implies p = 3 \] From the third equation: \[ 12 + 4p = 0 \implies 4p = -12 \implies p = -3 \] ### Conclusion We have two values for \( p \) from the equations, \( p = 3 \) and \( p = -3 \). However, since the \( \hat{i} \) component gives a constant value of -8, which cannot be zero, we conclude that the vectors \( \vec{A} \) and \( \vec{B} \) cannot be collinear for any value of \( p \). ### Final Answer The vectors \( \vec{A} \) and \( \vec{B} \) cannot be collinear for any value of \( p \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

If vec(A) = 4hat(i) - 2hat(j) + 6hat(k) and B = hat(i) - 2hat(j) - 3hat(k) the angle which the vec(A) vec(B) makes with x-axis is :

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-