Home
Class 12
PHYSICS
A unit vector in the dirction of resulta...

A unit vector in the dirction of resultant vector of `vec(A)= -2hat(i)+3hat(j)+hat(k)` and `vec(B)= hat(i)+2hat(j)-4hat(k)` is

A

`(-2hat(i) + 3hat(j) + hat(k))/(sqrt(35))`

B

`(-hat(i) + 2hat(j) + 4hat(k))/(sqrt(35))`

C

`(-hat(i) + 5hat(j) - 3hat(k))/(sqrt(35))`

D

`(-3hat(i) + hat(j) - 5hat(k))/(sqrt(35))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the unit vector in the direction of the sum of the vectors : vec(a) = 2hat(i)-hat(j)+2hat(k) and vec(b)=-hat(i)+hat(j)+3hat(k) .

Write a unit vector in the direction of the sum of the vectors : vec(a)=2hat(i)+2hat(j)-5hat(k) and vec(b)=2hat(i)+hat(j)+3hat(k) .

The unit vector parallel to the resultant of the vectors vec(A)= 4hat(i)+3hat(j)+6hat(k) and vec(B)= -hat(i)+3hat(j)-8hat(k) is

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find a unit vector in the direction of (vec(a)+vec(b)) , where : vec(a)=2hat(i)+2hat(j)-5hat(k) and vec(b)=2hat(i)+hat(j)+3hat(k) .

The unit vactor parallel to the resultant of the vectors vec(A)=4hat(i)+3hat(j)+6hat(k) and vec(B)=-hat(i)+3hat(j)-8hat(k) is :-

Find the unit vector in the direction of vec(a)-vec(b) , where : vec(a)=hat(i)+3hat(j)-hat(k), vec(b)=3hat(i)+2hat(j)+hat(k) .

The projection of the vector vec(A)= hat(i)-2hat(j)+hat(k) on the vector vec(B)= 4hat(i)-4hat(j)+7hat(k) is

The unit vector parallel to the resultant of the vectors vec(A) = hat(i) + 2 hat(j) - hat(k) and vec(B) = 2 hat(i) + 4 hat(j) - hat(k) is