Home
Class 12
PHYSICS
What can be the angle between (vec(P) + ...

What can be the angle between `(vec(P) + vec(Q))` and `(vec(P) - vec(Q))` ?

A

`90^(@)`

B

`0^(@)` only

C

any angle between `0^(@)` and `180^(@)`

D

`180^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{P} + \vec{Q}\) and \(\vec{P} - \vec{Q}\), we can use the concept of the dot product of vectors. ### Step-by-Step Solution: 1. **Understanding the Dot Product**: The dot product of two vectors \(\vec{A}\) and \(\vec{B}\) is given by: \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos(\theta) \] where \(\theta\) is the angle between the two vectors. 2. **Setting Up the Problem**: Let \(\vec{A} = \vec{P} + \vec{Q}\) and \(\vec{B} = \vec{P} - \vec{Q}\). We want to find the angle \(\alpha\) between \(\vec{A}\) and \(\vec{B}\). 3. **Calculating the Dot Product**: We compute the dot product \(\vec{A} \cdot \vec{B}\): \[ \vec{A} \cdot \vec{B} = (\vec{P} + \vec{Q}) \cdot (\vec{P} - \vec{Q}) \] Expanding this, we get: \[ = \vec{P} \cdot \vec{P} - \vec{P} \cdot \vec{Q} + \vec{Q} \cdot \vec{P} - \vec{Q} \cdot \vec{Q} \] Since \(\vec{P} \cdot \vec{Q} = \vec{Q} \cdot \vec{P}\), this simplifies to: \[ = |\vec{P}|^2 - |\vec{Q}|^2 \] 4. **Finding Magnitudes**: Next, we need to find the magnitudes of \(\vec{A}\) and \(\vec{B}\): - The magnitude of \(\vec{A}\): \[ |\vec{A}| = |\vec{P} + \vec{Q}| \] - The magnitude of \(\vec{B}\): \[ |\vec{B}| = |\vec{P} - \vec{Q}| \] 5. **Using the Dot Product Formula**: Now, we can express the cosine of the angle \(\alpha\) as: \[ \cos(\alpha) = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} = \frac{|\vec{P}|^2 - |\vec{Q}|^2}{|\vec{A}| |\vec{B}|} \] 6. **Analyzing the Cases**: - **Case 1**: If \(|\vec{P}| > |\vec{Q}|\), then \(\cos(\alpha) > 0\) which implies \(0 < \alpha < 90^\circ\). - **Case 2**: If \(|\vec{P}| < |\vec{Q}|\), then \(\cos(\alpha) < 0\) which implies \(90^\circ < \alpha < 180^\circ\). - **Case 3**: If \(|\vec{P}| = |\vec{Q}|\), then \(\cos(\alpha) = 0\) which implies \(\alpha = 90^\circ\). 7. **Conclusion**: Therefore, the angle \(\alpha\) between the vectors \(\vec{P} + \vec{Q}\) and \(\vec{P} - \vec{Q}\) can be any angle between \(0^\circ\) and \(180^\circ\). ### Final Answer: The angle between \((\vec{P} + \vec{Q})\) and \((\vec{P} - \vec{Q})\) can be any angle between \(0^\circ\) and \(180^\circ\).
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the angle between vec(P) and the resultant of (vec(P)+vec(Q)) and (vec(P)-vec(Q)) ?

Three vectors vec(P) , vec(Q) and vec( R) are such that |vec(P)| , |vec(Q )|, |vec(R )| = sqrt(2) |vec(P)| and vec(P) + vec(Q) + vec(R ) = 0 . The angle between vec(P) and vec(Q) , vec(Q) and vec(R ) and vec(P) and vec(R ) are

What is the anlge between vec P xx vec Q and vec Q xx vec P is

Given that P=Q=R . If vec(P)+vec(Q)=vec(R) then the angle between vec(P) and vec(R) is theta_(1) . If vec(P)+vec(Q)+vec(R)=vec(0) then the angle between vec(P) and vec(R) is theta_(2) . The relation between theta_(1) and theta_(2) is :-

What is the angle between vec P and the resultant of (vec P+vec Q) and (vec P-vec Q)

if vec(P) xx vec(R ) = vec(Q) xx vec(R ) , then

If vec(P).vec(Q)= PQ , then angle between vec(P) and vec(Q) is

If vec P and vec Q are two vectors, then the value of (vec P + vec Q) xx (vec P - vec Q) is

The resultant vec(P) and vec(Q) is perpendicular to vec(P) . What is the angle between vec(P) and vec(Q) ?

{:("Column- I",,"Column II",),("(Operation of nonzero vectors" vec(P) "and" vec(Q)")",,"(Possivle angle between" vec(P) "and" vec(Q) ")",),((A) |vec(P)xxvec(Q)|=0,,(P)" "90^(@),),((B) |vec(P)xxvec(Q)|=sqrt(3)vec(P).vec(Q),,(Q)" "180^(@),),((C) vec(P)+vec(Q)=vec(R) and P+Q=R,,(R)" "60^(@),),((D)|vec(P)+vec(Q)|=|vec(P)-vec(Q)|,,(S)" "0^(@),),(,,(T)" "30^(@),):}