Home
Class 12
PHYSICS
If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)...

If `|vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)`, then the value of `|vec(A)+vec(B)|` is

A

`(A^(2) + B^(2) + (AB)/(sqrt(3)))^(1//2)`

B

A+B

C

`(A^(2) + B^(2) + sqrt(3)AB)^(1//2)`

D

`(A^(2)+B^(2)+AB)^(1//2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

vec(A) and vec(B) are two Vectors and theta is the angle between them, if |vec(A)xxvec(B)|= sqrt(3)(vec(A).vec(B)) the value of theta is

If |vec(a)|=10,|vec(b)|=2 and vec(a)*vec(b)=12 , then the value of the |vec(a)xxvec(b)| is

If |vec(c)|=10, |vec(b)|=2 and vec(a)*vec(b)=12 , then what is the value of |vec(a)xxvec(b)| ?

Assertion: vec(A)xxvec(B) is perpendicualr to both vec(A)-vec(B) as well as vec(A)-vec(B) Reason: vec(A)xxvec(B) as well as vec(A)-vec(B) lie in the plane containing vec(A) and vec(B) , but vec(A)xxvec(B) lies perpendicular to the plane containing vec(A) and vec(B) .

Let vec(a), vec(b), vec(c) be non-coplanar vectors and vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]), vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]), vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)]) . What is the value of (vec(a)-vec(b)-vec(c)).vec(p)+(vec(b)-vec(c)-vec(a)).vec(q)+(vec(c)-vec(a)-vec(b)).vec(r) ?

Assertion: If theta be the angle between vec(A) and vec(B) , then tan theta= (vec(A)xxvec(B))/(vec(A).vec(B)) Reason: vec(A)xxvec(B) is perpendicualr to vec(A).vec(B) .

If |vec a|=2|vec b|=5 and |vec a xxvec b|=8, then find the value of vec a.vec b.

The value of (vec(A)+vec(B)).(vec(A)xxvec(B)) is :-

Let vec a and vec b be unit vectors such that |vec a+vec b|=sqrt(3). Then find the value of (2vec a+5vec b)*(3vec a+vec b+vec a xxvec b)

If (3 vec(a)-vec(b))xx(vec(a) + 3 vec(b)) =k vec(a)xxvec(b) then what is the value of k ?