Home
Class 12
PHYSICS
If |vec(A) xx vec(B)| = |vec(A).vec(B)|,...

If `|vec(A) xx vec(B)| = |vec(A).vec(B)|`, then the angle between `vec(A)` and `vec(B)` will be :

A

`30^(@)`

B

`45^(@)`

C

`60^(@)`

D

`75^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ |\vec{A} \times \vec{B}| = |\vec{A} \cdot \vec{B}| \] ### Step 1: Write the expressions for the magnitudes of the cross product and the dot product. The magnitude of the cross product \(|\vec{A} \times \vec{B}|\) is given by: \[ |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta \] where \(\theta\) is the angle between the vectors \(\vec{A}\) and \(\vec{B}\). The magnitude of the dot product \(|\vec{A} \cdot \vec{B}|\) is given by: \[ |\vec{A} \cdot \vec{B}| = |\vec{A}| |\vec{B}| \cos \theta \] ### Step 2: Set the two expressions equal to each other. From the problem statement, we have: \[ |\vec{A}| |\vec{B}| \sin \theta = |\vec{A}| |\vec{B}| \cos \theta \] ### Step 3: Simplify the equation. Assuming \(|\vec{A}| \neq 0\) and \(|\vec{B}| \neq 0\), we can divide both sides by \(|\vec{A}| |\vec{B}|\): \[ \sin \theta = \cos \theta \] ### Step 4: Solve for \(\theta\). The equation \(\sin \theta = \cos \theta\) can be rewritten as: \[ \tan \theta = 1 \] The angle \(\theta\) that satisfies this equation is: \[ \theta = 45^\circ \] ### Conclusion Thus, the angle between \(\vec{A}\) and \(\vec{B}\) is: \[ \theta = 45^\circ \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec(A) xx vec(B)| = |vec(A).vec(B)| , then angle between vec(A) and vec(B) will be :

If |vec(A)+vec(B)|=|vec(A)-vec(B)| , then find the angle between vec(A) and vec(B)

If |vec(A)xxvec(B)|=|vec(A)*vec(B)| ,then the angle between vec(A) and vec(B) will be

If |vec(A)+vec(B)| = |vec(A)-vec(B)| , find the angle between vec(A) and vec(B) .

If |vec(A)+vec(B)|=|vec(A)|=|vec(B)| then the angle between vec(A) and vec(B) is

If |vec(A)+vec(B)|=|vec(A)|+|vec(B)|, then angle between vec(A)and vec(B) will be

If vec(A) and vec(B) are two non - zero vectors such that |vec(A)+vec(B)|=(|vec(A)-vec(B)|)/(2) and |vec(A)|=2|vec(B)| then the angle between vec(A) and vec(B) is :

If vec(A) and vec(B) are two non-zero vectors such that |vec(A) +vec(B)|=(|vec(A)-vec(B)|)/(2) and |vec(A)|=2|vec(B)| then the angle between vec(A) and vec(B) is :

Two vectors vec(A) and vec(B) are such that |vec(A)+vec(B)|=|vec(A)-vec(B)| then what is the angle between vec(A) and vec(B) :-

If vec(A) xx vec(B) = vec(B) xx vec(A) , then the angle between A to B is