Home
Class 12
PHYSICS
Given two vectors vec(A) = -hat(i) + 2ha...

Given two vectors `vec(A) = -hat(i) + 2hat(j) - 3hat(k)` and `vec(B) = 4hat(i) - 2hat(j) + 6hat(k)`. The angle made by (A+B) with x-axis is :

A

`30^(@)`

B

`45^(@)`

C

`60^(@)`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle made by the vector \( \vec{A} + \vec{B} \) with the x-axis, we will follow these steps: ### Step 1: Calculate \( \vec{A} + \vec{B} \) Given: \[ \vec{A} = -\hat{i} + 2\hat{j} - 3\hat{k} \] \[ \vec{B} = 4\hat{i} - 2\hat{j} + 6\hat{k} \] Now, we add the vectors \( \vec{A} \) and \( \vec{B} \): \[ \vec{A} + \vec{B} = (-\hat{i} + 4\hat{i}) + (2\hat{j} - 2\hat{j}) + (-3\hat{k} + 6\hat{k}) \] Calculating each component: - For \( \hat{i} \): \( -1 + 4 = 3 \) - For \( \hat{j} \): \( 2 - 2 = 0 \) - For \( \hat{k} \): \( -3 + 6 = 3 \) Thus, \[ \vec{A} + \vec{B} = 3\hat{i} + 0\hat{j} + 3\hat{k} \] ### Step 2: Find the angle with the x-axis To find the angle \( \theta \) that the vector \( \vec{A} + \vec{B} \) makes with the x-axis, we use the cosine of the angle: \[ \cos \theta = \frac{\text{Component along } x}{\text{Magnitude of the vector}} \] The component along the x-axis is 3 (from \( 3\hat{i} \)). ### Step 3: Calculate the magnitude of \( \vec{A} + \vec{B} \) The magnitude of \( \vec{A} + \vec{B} \) is given by: \[ |\vec{A} + \vec{B}| = \sqrt{(3)^2 + (0)^2 + (3)^2} = \sqrt{9 + 0 + 9} = \sqrt{18} = 3\sqrt{2} \] ### Step 4: Calculate \( \cos \theta \) Now substituting the values into the cosine formula: \[ \cos \theta = \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Step 5: Find \( \theta \) To find \( \theta \): \[ \theta = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) \] This corresponds to: \[ \theta = 45^\circ \] ### Final Answer The angle made by \( \vec{A} + \vec{B} \) with the x-axis is \( 45^\circ \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec(A) = 4hat(i) - 2hat(j) + 6hat(k) and B = hat(i) - 2hat(j) - 3hat(k) the angle which the vec(A) vec(B) makes with x-axis is :

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

Find the angle between the vectors : vec(a)=2hat(i)-hat(j)+2hat(k) " and " vec(b)=6hat(i)+2hat(j)+3hat(k) .

Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = hat(i) + 5hat(j) and vec(c) = 4hat(i) + 4hat(j) - 2hat(k) . The projection of the vector 3vec(a) - 2vec(b) on the vector vec(c) is

vec(A)=2hat(i)+4hat(j)+4hat(k) and vec(B)=4hat(i)+2hat(j)-4hat(k) are two vectors. Find the angles between them.