Home
Class 12
PHYSICS
Given two vectors A = -4hat(i) + 4hat(j)...

Given two vectors `A = -4hat(i) + 4hat(j) + 2hat(k)` and `B = 2hat(i) - hat(j) - hat(k)`. The angle made by (A+B) with `hat(i) + 2hat(j) - 4hat(k)` is :

A

`30^(@)`

B

`45^(@)`

C

`60^(@)`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle made by the vector \( \mathbf{A} + \mathbf{B} \) with the vector \( \mathbf{X} = \hat{i} + 2\hat{j} - 4\hat{k} \), we will follow these steps: ### Step 1: Calculate \( \mathbf{A} + \mathbf{B} \) Given: \[ \mathbf{A} = -4\hat{i} + 4\hat{j} + 2\hat{k} \] \[ \mathbf{B} = 2\hat{i} - \hat{j} - \hat{k} \] Now, we add the two vectors: \[ \mathbf{A} + \mathbf{B} = (-4\hat{i} + 2\hat{i}) + (4\hat{j} - \hat{j}) + (2\hat{k} - \hat{k}) \] \[ = (-4 + 2)\hat{i} + (4 - 1)\hat{j} + (2 - 1)\hat{k} \] \[ = -2\hat{i} + 3\hat{j} + 1\hat{k} \] Thus, \[ \mathbf{A} + \mathbf{B} = -2\hat{i} + 3\hat{j} + \hat{k} \] ### Step 2: Calculate the dot product \( (\mathbf{A} + \mathbf{B}) \cdot \mathbf{X} \) Given: \[ \mathbf{X} = \hat{i} + 2\hat{j} - 4\hat{k} \] Now, we calculate the dot product: \[ (\mathbf{A} + \mathbf{B}) \cdot \mathbf{X} = (-2\hat{i} + 3\hat{j} + \hat{k}) \cdot (\hat{i} + 2\hat{j} - 4\hat{k}) \] \[ = (-2)(1) + (3)(2) + (1)(-4) \] \[ = -2 + 6 - 4 \] \[ = 0 \] ### Step 3: Calculate the magnitudes of \( \mathbf{A} + \mathbf{B} \) and \( \mathbf{X} \) Magnitude of \( \mathbf{A} + \mathbf{B} \): \[ |\mathbf{A} + \mathbf{B}| = \sqrt{(-2)^2 + 3^2 + 1^2} = \sqrt{4 + 9 + 1} = \sqrt{14} \] Magnitude of \( \mathbf{X} \): \[ |\mathbf{X}| = \sqrt{(1)^2 + (2)^2 + (-4)^2} = \sqrt{1 + 4 + 16} = \sqrt{21} \] ### Step 4: Calculate the angle \( \theta \) Using the formula for the cosine of the angle between two vectors: \[ \cos \theta = \frac{(\mathbf{A} + \mathbf{B}) \cdot \mathbf{X}}{|\mathbf{A} + \mathbf{B}| |\mathbf{X}|} \] Substituting the values we found: \[ \cos \theta = \frac{0}{\sqrt{14} \cdot \sqrt{21}} = 0 \] ### Step 5: Determine the angle \( \theta \) Since \( \cos \theta = 0 \), we find: \[ \theta = 90^\circ \] ### Final Answer: The angle made by \( \mathbf{A} + \mathbf{B} \) with \( \hat{i} + 2\hat{j} - 4\hat{k} \) is \( 90^\circ \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4hat(i) - 2hat(j) + 6hat(k) . The angle made by (A+B) with x-axis is :

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

If angle bisector of vec(a) = 2hat(i) + 3hat(j) + 4hat(k) and vec(b) = 4hat(i) - 2hat(j) + 3 hat(k) is vec(c) = alpha hat(i) + 2hat(j) + beta hat(k) then :

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

The vector(s) which is/are coplanar with vectors hat(i)+hat(j)+2hat(k) and hat(i)+2hat(j)+hat(k) are perpendicular to the vector hat(i)+hat(j)+hat(k) is are

The sine of the angle between 3hat(i)+hat(j)+2hat(k)and 2hat(i)-2hat(j)+4hat(k) is

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

The position vectors of three points A,B anc C (-4hat(i) +2hat(j) -3hat(k)) (hat(i) +3hat(j) -2hat(k)) "and " (-9hat(i) +hat(j) -4hat(k)) respectively . Show that the points A,B and C are collinear.

A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + hat(k ) and 3hat(i) - 4hat(i) - hat(k) is