Home
Class 12
PHYSICS
If hat(i), hat(j) and hat(k) represent u...

If `hat(i), hat(j)` and `hat(k)` represent unit vectors along the x, y and z axes respectively, then the angle `theta` between the vectors `(hat(i) + hat(j) + hat(k))` and `(hat(i) + hat(j))` is equal to :

A

`sin^(-1)((1)/(sqrt(3)))`

B

`sin^(-1)(sqrt((2)/(3)))`

C

`cos^(-1)((1)/(sqrt(3)))`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle `theta` between the vectors \( \hat{i} + \hat{j} + \hat{k} \) and \( \hat{i} + \hat{j} \), we can use the dot product formula. Here’s a step-by-step solution: ### Step 1: Define the vectors Let: - \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{B} = \hat{i} + \hat{j} \) ### Step 2: Calculate the dot product \( \mathbf{A} \cdot \mathbf{B} \) Using the dot product formula: \[ \mathbf{A} \cdot \mathbf{B} = (\hat{i} + \hat{j} + \hat{k}) \cdot (\hat{i} + \hat{j}) \] Expanding this: \[ \mathbf{A} \cdot \mathbf{B} = \hat{i} \cdot \hat{i} + \hat{i} \cdot \hat{j} + \hat{j} \cdot \hat{i} + \hat{j} \cdot \hat{j} + \hat{k} \cdot \hat{i} + \hat{k} \cdot \hat{j} \] Since \( \hat{i} \cdot \hat{i} = 1 \), \( \hat{j} \cdot \hat{j} = 1 \), and all other dot products are zero: \[ \mathbf{A} \cdot \mathbf{B} = 1 + 0 + 0 + 1 + 0 + 0 = 2 \] ### Step 3: Calculate the magnitudes of \( \mathbf{A} \) and \( \mathbf{B} \) Magnitude of \( \mathbf{A} \): \[ |\mathbf{A}| = |\hat{i} + \hat{j} + \hat{k}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] Magnitude of \( \mathbf{B} \): \[ |\mathbf{B}| = |\hat{i} + \hat{j}| = \sqrt{1^2 + 1^2} = \sqrt{2} \] ### Step 4: Use the dot product to find \( \cos \theta \) Using the formula: \[ \mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta \] Substituting the values we found: \[ 2 = \sqrt{3} \cdot \sqrt{2} \cdot \cos \theta \] This simplifies to: \[ 2 = \sqrt{6} \cos \theta \] Thus: \[ \cos \theta = \frac{2}{\sqrt{6}} = \frac{\sqrt{6}}{3} \] ### Step 5: Find \( \sin \theta \) Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \sin^2 \theta = 1 - \left(\frac{2}{\sqrt{6}}\right)^2 = 1 - \frac{4}{6} = \frac{2}{6} = \frac{1}{3} \] So: \[ \sin \theta = \frac{1}{\sqrt{3}} \] ### Step 6: Determine \( \theta \) Thus: \[ \theta = \sin^{-1} \left(\frac{1}{\sqrt{3}}\right) \] ### Final Answer The angle \( \theta \) between the vectors \( \hat{i} + \hat{j} + \hat{k} \) and \( \hat{i} + \hat{j} \) is: \[ \theta = \sin^{-1} \left(\frac{1}{\sqrt{3}}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If hat(i), hat(j) and hat(k) are unit vectors along x,y and z-axis respectively, the angle theta between the vector hat(i) + hat(j) + hat(k)" ""and vector" hat(j) is given by

Find the angle between the vectors hat(i)-hat(j) and hat(j)-hat(k) .

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

The angle between the vectors (hat i + hat j + hat k) and ( hat i - hat j -hat k) is

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

The angle between the vectors hat(i)-hat(j) and hat(j)+hat(k) is :

Angle between the vectors (hat(i)+hat(j)) and (hat(j)-hat(k)) is

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

The angle between the Vector (hat(i)+hat(j)) and (hat(j)+hat(k)) is