Home
Class 12
PHYSICS
If vector hat(i) - 3hat(j) + 5hat(k) and...

If vector `hat(i) - 3hat(j) + 5hat(k)` and `hat(i) - 3 hat(j) - a hat(k)` are equal vectors, then the value of a is :

A

`-5`

B

2

C

`-3`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) such that the vectors \( \hat{i} - 3\hat{j} + 5\hat{k} \) and \( \hat{i} - 3\hat{j} - a\hat{k} \) are equal. ### Step-by-Step Solution: 1. **Identify the vectors**: The first vector is: \[ \vec{A} = \hat{i} - 3\hat{j} + 5\hat{k} \] The second vector is: \[ \vec{B} = \hat{i} - 3\hat{j} - a\hat{k} \] 2. **Set the vectors equal**: Since the vectors are equal, we can write: \[ \hat{i} - 3\hat{j} + 5\hat{k} = \hat{i} - 3\hat{j} - a\hat{k} \] 3. **Compare the components**: From the equality of the vectors, we can compare the coefficients of \( \hat{k} \): \[ 5 = -a \] 4. **Solve for \( a \)**: Rearranging the equation gives: \[ a = -5 \] 5. **Conclusion**: The value of \( a \) is: \[ \boxed{-5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If vectors hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3hat(j) - a hat(k) are equal vectors, then the value of a is :

The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :-

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If the vectors hat(i)-2hat(j)+hat(k),ahat(i)+5hat(j)-3hat(k)and5hat(i)-9hat(j)+4hat(k) are coplanar, then the value of a is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

If a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), and hat(i)+hat(j)+c hat(k) are coplanar vectors, then what is the value of a+b+c-abc?

If three vectors 2hat(i)-hat(j)-hat(k), hat(i)+2hat(j)-3hat(k) and 3hat(i)+lambda hat(j)+5hat(k) are coplanar, then the value of lambda is