Home
Class 12
PHYSICS
If vec(A) = hat(i) + hat(j) + hat(k) and...

If `vec(A) = hat(i) + hat(j) + hat(k)` and `B = -hat(i) - hat(j) - hat(k)`. Then angle made by `(vec(A) - vec(B))` with `vec(A)` is :

A

`0^(@)`

B

`180^(@)`

C

`90^(@)`

D

`60^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle made by the vector \((\vec{A} - \vec{B})\) with \(\vec{A}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{A} = \hat{i} + \hat{j} + \hat{k} \] \[ \vec{B} = -\hat{i} - \hat{j} - \hat{k} \] ### Step 2: Calculate \(\vec{A} - \vec{B}\) We can calculate \(\vec{A} - \vec{B}\) as follows: \[ \vec{A} - \vec{B} = (\hat{i} + \hat{j} + \hat{k}) - (-\hat{i} - \hat{j} - \hat{k}) \] This simplifies to: \[ \vec{A} - \vec{B} = \hat{i} + \hat{j} + \hat{k} + \hat{i} + \hat{j} + \hat{k} = 2\hat{i} + 2\hat{j} + 2\hat{k} \] Thus, we have: \[ \vec{A} - \vec{B} = 2(\hat{i} + \hat{j} + \hat{k}) \] ### Step 3: Identify the vectors for angle calculation Let: \[ \vec{Y} = \vec{A} - \vec{B} = 2(\hat{i} + \hat{j} + \hat{k}) \quad \text{and} \quad \vec{A} = \hat{i} + \hat{j} + \hat{k} \] ### Step 4: Use the dot product to find the angle The cosine of the angle \(\theta\) between two vectors can be found using the dot product formula: \[ \vec{Y} \cdot \vec{A} = |\vec{Y}| |\vec{A}| \cos \theta \] ### Step 5: Calculate the dot product \(\vec{Y} \cdot \vec{A}\) Calculating the dot product: \[ \vec{Y} \cdot \vec{A} = (2\hat{i} + 2\hat{j} + 2\hat{k}) \cdot (\hat{i} + \hat{j} + \hat{k}) = 2(1) + 2(1) + 2(1) = 2 + 2 + 2 = 6 \] ### Step 6: Calculate the magnitudes of \(\vec{Y}\) and \(\vec{A}\) Calculating the magnitudes: \[ |\vec{Y}| = |2(\hat{i} + \hat{j} + \hat{k})| = 2|\hat{i} + \hat{j} + \hat{k}| = 2\sqrt{1^2 + 1^2 + 1^2} = 2\sqrt{3} \] \[ |\vec{A}| = |\hat{i} + \hat{j} + \hat{k}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] ### Step 7: Substitute into the dot product formula Substituting into the formula: \[ 6 = (2\sqrt{3})(\sqrt{3}) \cos \theta \] \[ 6 = 6 \cos \theta \] \[ \cos \theta = 1 \] ### Step 8: Solve for \(\theta\) The angle \(\theta\) for which \(\cos \theta = 1\) is: \[ \theta = 0^\circ \] ### Final Answer The angle made by \((\vec{A} - \vec{B})\) with \(\vec{A}\) is \(0^\circ\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a) = 5 hat(i) - hat(j) - 3 hat(k) and vec(b) = hat(i) + 3 hat(j) - 5 hat(k) , find the angle between vec(a) and vec(b) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

If vec(a) = 2 hat(i) + 2 hat(j) + hat(k) , vec(b) = - hat(i) + hat(j) + 2 hat(k) and vec ( c) = 3 hat(i) + hat(j) such that vec(a) + lambda hat (b) is perpendicular to vec( c) , find lambda .

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals