Home
Class 12
PHYSICS
Two vectors are given by vec(A) = hat(i)...

Two vectors are given by `vec(A) = hat(i) + 2hat(j) + 2hat(k)` and `vec(B) = 3hat(i) + 6hat(j) + 2hat(k)`. Another vector `vec(C )` has the same magnitude as `vec(B)` but has the same direction as `vec(A)`. Then which of the following vectors represents `vec(C )` ?

A

`(7)/(3)(hat(i) + 2hat(j) + 2hat(k))`

B

`(3)/(7)(hat(i) - 2hat(j) + 2hat(k))`

C

`(7)/(9)(hat(i) - 2hat(j) + 2hat(k))`

D

`(7)/(9)(hat(i) + 2hat(j) + 2hat(k))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \(\vec{C}\) that has the same magnitude as \(\vec{B}\) but the same direction as \(\vec{A}\), we can follow these steps: ### Step 1: Calculate the magnitude of vector \(\vec{B}\) The magnitude of a vector \(\vec{B} = a\hat{i} + b\hat{j} + c\hat{k}\) is given by the formula: \[ |\vec{B}| = \sqrt{a^2 + b^2 + c^2} \] For \(\vec{B} = 3\hat{i} + 6\hat{j} + 2\hat{k}\): \[ |\vec{B}| = \sqrt{3^2 + 6^2 + 2^2} = \sqrt{9 + 36 + 4} = \sqrt{49} = 7 \] ### Step 2: Calculate the magnitude of vector \(\vec{A}\) For \(\vec{A} = \hat{i} + 2\hat{j} + 2\hat{k}\): \[ |\vec{A}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] ### Step 3: Find the unit vector in the direction of \(\vec{A}\) The unit vector \(\hat{A}\) in the direction of \(\vec{A}\) is given by: \[ \hat{A} = \frac{\vec{A}}{|\vec{A}|} = \frac{\hat{i} + 2\hat{j} + 2\hat{k}}{3} = \frac{1}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k} \] ### Step 4: Scale the unit vector \(\hat{A}\) to have the same magnitude as \(\vec{B}\) To find \(\vec{C}\), we scale the unit vector \(\hat{A}\) by the magnitude of \(\vec{B}\): \[ \vec{C} = |\vec{B}| \cdot \hat{A} = 7 \cdot \left(\frac{1}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}\right) \] Calculating this gives: \[ \vec{C} = \frac{7}{3}\hat{i} + \frac{14}{3}\hat{j} + \frac{14}{3}\hat{k} \] ### Final Answer Thus, the vector \(\vec{C}\) is: \[ \vec{C} = \frac{7}{3}\hat{i} + \frac{14}{3}\hat{j} + \frac{14}{3}\hat{k} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4hat(i) - 2hat(j) + 6hat(k) . The angle made by (A+B) with x-axis is :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2hat(k) and vec(c ) = hat(i) + m hat(j) + n hat(k) are three coplanar vectors and |vec(c )| = sqrt6 , then which one of the following is correct?

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

If vec(A)=2hat(i)+6hat(j)and vec(B)=4hat(i)+3hat(j), the vector having the same magnitude as vec(B) and parallel to vec(A) is

If vec A = hat i + 3 hat j + 2 hat K and vec B = 3 hat i + hat j + 2 hat k , then find the vector product vec A xx vec B .

Two vectors are given by vec a=-2hat i+hat j-3hat k and vec b=5hat i+3hat j-2hat k If 3vec a+2vec b-vec c=0 then third vector vec c is