Home
Class 12
PHYSICS
The ratio of S.I unit of the C.G.S unit ...

The ratio of `S.I` unit of the C.G.S unit of gravitational constant 'G' is-

A

`10^(-2)`

B

`10^(-3)`

C

`10^(2)`

D

`10^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the ratio of the SI unit of the gravitational constant \( G \) to its CGS unit, we will follow these steps: ### Step 1: Identify the SI unit of \( G \) The SI unit of the gravitational constant \( G \) is given as: \[ G = 6.67 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \] ### Step 2: Convert the SI unit to CGS unit To convert the SI unit to CGS unit, we need to convert meters to centimeters and kilograms to grams. 1. **Convert meters to centimeters:** \[ 1 \, \text{m} = 100 \, \text{cm} \quad \Rightarrow \quad 1 \, \text{m}^3 = (100 \, \text{cm})^3 = 100^3 \, \text{cm}^3 = 10^6 \, \text{cm}^3 \] 2. **Convert kilograms to grams:** \[ 1 \, \text{kg} = 1000 \, \text{g} \quad \Rightarrow \quad 1 \, \text{kg}^{-1} = \frac{1}{1000} \, \text{g}^{-1} = 10^{-3} \, \text{g}^{-1} \] 3. **The time unit remains the same:** \[ 1 \, \text{s} = 1 \, \text{s} \] Putting it all together, we convert \( G \) to CGS units: \[ G = 6.67 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} = 6.67 \times 10^{-11} \times 10^6 \, \text{cm}^3 \times 10^{-3} \, \text{g}^{-1} \, \text{s}^{-2} \] \[ = 6.67 \times 10^{-5} \, \text{cm}^3 \, \text{g}^{-1} \, \text{s}^{-2} \] ### Step 3: Write the CGS unit of \( G \) The CGS unit of \( G \) is: \[ G = 6.67 \times 10^{-8} \, \text{cm}^3 \, \text{g}^{-1} \, \text{s}^{-2} \] ### Step 4: Calculate the ratio of SI unit to CGS unit Now, we can find the ratio of the SI unit to the CGS unit: \[ \text{Ratio} = \frac{6.67 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2}}{6.67 \times 10^{-8} \, \text{cm}^3 \, \text{g}^{-1} \, \text{s}^{-2}} \] ### Step 5: Simplify the ratio The \( 6.67 \) and \( \text{s}^{-2} \) cancel out: \[ \text{Ratio} = \frac{10^{-11} \, \text{m}^3 \, \text{kg}^{-1}}{10^{-8} \, \text{cm}^3 \, \text{g}^{-1}} \] Now, converting the units: \[ \text{m} = 100 \, \text{cm} \quad \Rightarrow \quad \text{m}^3 = 10^6 \, \text{cm}^3 \] \[ \text{kg} = 1000 \, \text{g} \quad \Rightarrow \quad \text{kg}^{-1} = 10^{-3} \, \text{g}^{-1} \] Substituting these conversions into the ratio: \[ \text{Ratio} = \frac{10^{-11} \times 10^6 \, \text{cm}^3 \times 10^{-3} \, \text{g}^{-1}}{10^{-8} \, \text{cm}^3 \, \text{g}^{-1}} \] \[ = \frac{10^{-11 + 6 - 3}}{10^{-8}} = \frac{10^{-8}}{10^{-8}} = 1 \] ### Final Answer The ratio of the SI unit of \( G \) to the CGS unit of \( G \) is: \[ \text{Ratio} = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The SI unit of gravitational constant is

The ratio of SI unit to CGS unti of gravitational constant of

The SI unit of the universal gravitational constant G is

The C.G.S. unit of universal gravitational constant is

The S.I. unit of gravitational potential is

The ratio of SI units to CGS units of g is

A suitable unit for gravitational constant is

A suitable unit for gravitational constant is

The ratio of SI unit to the CGS unit of plank's constant is

The ratio of SI units to CGS of the gravitational intensity is