Home
Class 12
PHYSICS
If for some particle its position vector...

If for some particle its position vector and linear momentum are respectively be `2hati+hatj+hatk` and `2hati-3hatj+hatk`. Its angular momentum will be:

A

`2hati-4hatk`

B

`4hati-8hatk`

C

`4hati-4hatj+2hatk`

D

`4hati-8hatj`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angular momentum \( \mathbf{L} \) of a particle, we use the formula: \[ \mathbf{L} = \mathbf{R} \times \mathbf{P} \] where \( \mathbf{R} \) is the position vector and \( \mathbf{P} \) is the linear momentum vector. ### Step 1: Identify the position vector \( \mathbf{R} \) and momentum vector \( \mathbf{P} \) Given: \[ \mathbf{R} = 2\hat{i} + \hat{j} + \hat{k} \] \[ \mathbf{P} = 2\hat{i} - 3\hat{j} + \hat{k} \] ### Step 2: Set up the cross product \( \mathbf{R} \times \mathbf{P} \) To calculate the cross product, we can use the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of \( \mathbf{R} \) and \( \mathbf{P} \). \[ \mathbf{L} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 2 & -3 & 1 \end{vmatrix} \] ### Step 3: Calculate the determinant Using the determinant formula for a 3x3 matrix: \[ \mathbf{L} = \hat{i} \begin{vmatrix} 1 & 1 \\ -3 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 2 & -3 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 1 & 1 \\ -3 & 1 \end{vmatrix} = (1)(1) - (1)(-3) = 1 + 3 = 4 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} = (2)(1) - (1)(2) = 2 - 2 = 0 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 2 & 1 \\ 2 & -3 \end{vmatrix} = (2)(-3) - (1)(2) = -6 - 2 = -8 \] ### Step 4: Combine the results Now substituting back into the expression for \( \mathbf{L} \): \[ \mathbf{L} = 4\hat{i} - 0\hat{j} - 8\hat{k} \] Thus, we can simplify this to: \[ \mathbf{L} = 4\hat{i} - 8\hat{k} \] ### Final Answer The angular momentum \( \mathbf{L} \) is: \[ \mathbf{L} = 4\hat{i} - 8\hat{k} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The radius vector and linear momentum are respectively given by vector 2hati+2hatj+hatk and 2hati-2hatj+hatk . Their angular momentum is

Given r=4hatj and p=2hati+3hatj+hatk . The angular momentum is

If the position vectors of P and Q be respectively hati+3hatj-7hatk and 5hati-2hatj+4hatk and vec(PQ)

If the position vectors of A and B respectively hati+3hatj-7hatk and 5 hati-2hatj+4hatk , then find AB

A partical has the position vector r = hati - 2 hatj + hatk and the linear momentum p = 2 hati - hatj + hatk its angular momentum about the origin is

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find a unit vector parallel to the sum of the vector (hati + hatj + hatk) and (2hati - 3hatj + 5hatk) .

Calculate the angular momentum if vecr=2hati-3hatj-4hatk and vecP= hati+hatj-5hatk .