Home
Class 12
MATHS
Given that f satisfies |f(u)-f(v)|lt=|u...

Given that `f` satisfies `|f(u)-f(v)|lt=|u-v|` for u and v in `[a , b]dot` Then `|int_a^bf(x)dx-(b-a)f(a)|lt=` (a)`((b-a))/2` (b) `((b-a)^2)/2` (c)`(b-a)^2` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot Then |int_a^bf(x)dx-(b-a)f(a)|lt= (a) ((b-a))/2 (b) ((b-a)^2)/2 (b-a)^2 (d) none of these

Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot Then |int_a^bf(x)dx-(b-a)f(a)|lt= (a) ((b-a))/2 (b) ((b-a)^2)/2 (b-a)^2 (d) none of these

Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot Then |int_a^bf(x)dx-(b-a)f(a)|lt= (a) ((b-a))/2 (b) ((b-a)^2)/2 (b-a)^2 (d) none of these

Given that f satisfies |f(u)-f(v)|<=|u-v| for u and v in [a,b] .Then |int_(a)^(b)f(x)dx-(b-a)f(a)|<=(a)((b-a))/(2) (b) ((b-a)^(2))/(2)(c)(b-a)^(2)( d) none of these

int_(a)^(b-a)f''(x+a)dx equals (a) f(b-a)-f(a) " " (b) f(b)-f(2a) (c) f'(b)-f'(2a) " " (d) f'(b-a)-f'(2a)

If f(x) is monotonic differentiable function on [a , b] , then int_a^bf(x)dx+int_(f(a))^(f(b))f^(-1)(x)dx= (a) bf(a)-af(b) (b) bf(b)-af(a) (c) f(a)+f(b) (d) cannot be found

If f(x) is monotonic differentiable function on [a , b] , then int_a^bf(x)dx+int_(f(a))^(f(b))f^(-1)(x)dx= (a) bf(a)-af(b) (b) bf(b)-af(a) (c) f(a)+f(b) (d) cannot be found

If f(x) is monotonic differentiable function on [a , b] , then int_a^bf(x)dx+int_(f(a))^(f(b))f^(-1)(x)dx= (a) bf(a)-af(b) (b) bf(b)-af(a) (c) f(a)+f(b) (d) cannot be found

If f(x) is monotonic differentiable function on [a,b], then int_(a)^(b)f(x)dx+int_(f(a))^(f(b))f^(-1)(x)dx=(a)bf(a)-af(b)(b) bf (b)-af(a)(c)f(a)+f(b)(d) cannot be found