Home
Class 12
CHEMISTRY
K(c) for the reaction, A(l)+2B(s)+3C(g)h...

`K_(c)` for the reaction, `A(l)+2B(s)+3C(g)hArr 2D(g)+2E(g)" at "27^(@)C` is `10^(-3)M`.
`K_(P)` at this temperature is

A

`24.63xx10^(-3)`

B

`12.63xx10^(-3)`

C

`1/263xx10^(-3)`

D

`2.46xx10^(-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( K_P \) for the reaction \[ A(l) + 2B(s) + 3C(g) \rightleftharpoons 2D(g) + 2E(g) \] at \( 27^\circ C \) given that \( K_C = 10^{-3} \, M \), we can use the relationship between \( K_C \) and \( K_P \): \[ K_P = K_C \cdot (RT)^{\Delta n} \] **Step 1: Determine \( \Delta n \)** - \( \Delta n \) is the change in the number of moles of gas during the reaction. - Count the moles of gaseous products and reactants: - Products: \( 2D(g) + 2E(g) \) → total = \( 2 + 2 = 4 \) moles - Reactants: \( 3C(g) \) → total = \( 3 \) moles - Therefore, \[ \Delta n = \text{moles of products} - \text{moles of reactants} = 4 - 3 = 1 \] **Step 2: Convert temperature to Kelvin** - The temperature given is \( 27^\circ C \). To convert this to Kelvin: \[ T(K) = 27 + 273 = 300 \, K \] **Step 3: Use the ideal gas constant \( R \)** - The value of \( R \) (ideal gas constant) is \( 0.08205 \, \text{L atm K}^{-1} \text{mol}^{-1} \). **Step 4: Substitute values into the equation** - Now, we can substitute \( K_C \), \( R \), \( T \), and \( \Delta n \) into the equation for \( K_P \): \[ K_P = K_C \cdot (RT)^{\Delta n} \] Substituting the values: \[ K_P = 10^{-3} \cdot (0.08205 \cdot 300)^1 \] **Step 5: Calculate \( RT \)** - Calculate \( RT \): \[ RT = 0.08205 \cdot 300 = 24.615 \] **Step 6: Calculate \( K_P \)** - Now substitute \( RT \) back into the equation for \( K_P \): \[ K_P = 10^{-3} \cdot 24.615 \approx 24.615 \times 10^{-3} \] Thus, \[ K_P \approx 24.63 \times 10^{-3} \] **Final Answer:** \[ K_P \approx 24.63 \times 10^{-3} \, \text{atm} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

K_(p)//K_(c) for the reaction CO(g)+1/2 O_(2)(g) hArr CO_(2)(g) is

The K_c for given reaction will be A_2 (g) +2B (g) hArr C(g) +2D(s)

For the reaction: NOCl(g) hArr 2NO(g) +Cl_(2)(g), K_(c) at 427^(@)C is 3xx10^(6) L mol^(-1) . The value of K_(p) is

At 700K , for the reaction 2SO_(2)(g)+O_(2)(g)hArr2SO_(3)(g) the K_(p) "is" 3.2xx10^(4) . At the same temperature the K_(p) for the reaction SO_(3)(g)hArrSO_(2)(g)+0.50O_(2)(g) is:

Calculate K_p from K_c : The equilibrium constant, K_c , for the reaction N_2O_4(g) hArr 2NO_2(g) is 3.64xx10^-3 at 25^@C . What is the value of K_p at this temperature?

At 773 K, the equilibrium constant K_(c) for the reaction, N_(2) (g) + 3 H_(2) (g) hArr 2 NH_(3) (g)" is " 6.02 xx 10^(-2)L^(2) mol^(-2). Calculate the value of K_(p) at the same temperature.