Home
Class 12
CHEMISTRY
If the solubility product of AgBrO(3), a...

If the solubility product of `AgBrO_(3)`, and `AgSO_(4)` are `5.5 xx 10^(-5)` and `2 xx 10^(-5)` respectively, the relationship between the solubility of these salts can be correctly represented as

A

`S_(AgBrO_(3)) gt S_(Ag_(2)SO_(4))`

B

`S_(AgBrO_(3)) = (S_(Ag_(2))SO_(4))`

C

`S_(AgBrO_(3)) lt S_(Ag_(2)SO_(4))`

D

Unpredictable

Text Solution

AI Generated Solution

The correct Answer is:
To determine the relationship between the solubility of `AgBrO3` and `Ag2SO4`, we will follow these steps: ### Step 1: Write the dissociation equations For `AgBrO3`: \[ \text{AgBrO}_3 \rightarrow \text{Ag}^+ + \text{BrO}_3^- \] For `Ag2SO4`: \[ \text{Ag}_2\text{SO}_4 \rightarrow 2\text{Ag}^+ + \text{SO}_4^{2-} \] ### Step 2: Write the expressions for solubility products (Ksp) For `AgBrO3`, if the solubility is \( S \): \[ K_{sp} = [\text{Ag}^+][\text{BrO}_3^-] = S \cdot S = S^2 \] Given \( K_{sp} = 5.5 \times 10^{-5} \): \[ S^2 = 5.5 \times 10^{-5} \] \[ S = \sqrt{5.5 \times 10^{-5}} \] For `Ag2SO4`, if the solubility is \( S \): \[ K_{sp} = [\text{Ag}^+]^2[\text{SO}_4^{2-}] = (2S)^2 \cdot S = 4S^3 \] Given \( K_{sp} = 2 \times 10^{-5} \): \[ 4S^3 = 2 \times 10^{-5} \] \[ S^3 = \frac{2 \times 10^{-5}}{4} = 5 \times 10^{-6} \] \[ S = \sqrt[3]{5 \times 10^{-6}} \] ### Step 3: Calculate the solubility of each salt 1. For `AgBrO3`: \[ S = \sqrt{5.5 \times 10^{-5}} \approx 7.41 \times 10^{-3} \, \text{mol/L} \] 2. For `Ag2SO4`: \[ S = \sqrt[3]{5 \times 10^{-6}} \approx 1.70 \times 10^{-2} \, \text{mol/L} \] ### Step 4: Compare the solubility values - Solubility of `AgBrO3` is approximately \( 7.41 \times 10^{-3} \, \text{mol/L} \) - Solubility of `Ag2SO4` is approximately \( 1.70 \times 10^{-2} \, \text{mol/L} \) ### Conclusion Since \( 1.70 \times 10^{-2} > 7.41 \times 10^{-3} \), we can conclude: \[ \text{Solubility of } Ag_2SO_4 > \text{Solubility of } AgBrO_3 \] ### Final Answer The relationship between the solubility of these salts can be correctly represented as: \[ \text{Solubility of } AgBrO_3 < \text{Solubility of } Ag_2SO_4 \] ---
Promotional Banner