Home
Class 12
CHEMISTRY
0.5 moles of HCI and 0.5 moles of CH(3)C...

0.5 moles of HCI and 0.5 moles of `CH_(3)COONa` are disolved in water and the solution is made upto 500 ml. The `H ^+`of the resulting solution will be: `(K_(a) (CH_(3)COOH) = 1.6 xx 10^(-5))`

A

`1.6 xx 10^(-5)`

B

`1.6 xx 10^(-4)`

C

`4 xx 10^(-3)`

D

`4 xx 10^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the concentration of \( H^+ \) ions in the solution formed by mixing 0.5 moles of HCl and 0.5 moles of sodium acetate (CH₃COONa) in 500 mL of water, we can follow these steps: ### Step 1: Determine the concentrations of HCl and CH₃COONa - We have 0.5 moles of HCl and 0.5 moles of CH₃COONa dissolved in 500 mL of solution. - To find the concentration (C) in mol/L, we convert 500 mL to liters: \[ 500 \, \text{mL} = 0.5 \, \text{L} \] - Now, calculate the concentration: \[ C_{\text{HCl}} = \frac{0.5 \, \text{moles}}{0.5 \, \text{L}} = 1 \, \text{M} \] \[ C_{\text{CH}_3\text{COONa}} = \frac{0.5 \, \text{moles}}{0.5 \, \text{L}} = 1 \, \text{M} \] ### Step 2: Write the reaction - HCl is a strong acid and will completely dissociate in solution: \[ \text{HCl} \rightarrow \text{H}^+ + \text{Cl}^- \] - Sodium acetate (CH₃COONa) will dissociate into acetate ions (CH₃COO⁻) and sodium ions (Na⁺): \[ \text{CH}_3\text{COONa} \rightarrow \text{CH}_3\text{COO}^- + \text{Na}^+ \] - The acetate ion can react with the \( H^+ \) ions: \[ \text{CH}_3\text{COO}^- + \text{H}^+ \rightleftharpoons \text{CH}_3\text{COOH} \] ### Step 3: Set up the equilibrium expression - Let \( C \) be the initial concentration of both HCl and CH₃COONa, which is 1 M. - At equilibrium, let \( \alpha \) be the degree of dissociation of acetic acid (CH₃COOH). - The concentrations at equilibrium will be: - \( [\text{CH}_3\text{COOH}] = C \alpha \) - \( [\text{H}^+] = C - C \alpha = C(1 - \alpha) \) - \( [\text{CH}_3\text{COO}^-] = C - C \alpha = C(1 - \alpha) \) ### Step 4: Apply the acid dissociation constant (Ka) - The dissociation constant \( K_a \) for acetic acid is given as \( 1.6 \times 10^{-5} \): \[ K_a = \frac{[\text{H}^+][\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]} \] - Substituting the equilibrium concentrations into the expression: \[ 1.6 \times 10^{-5} = \frac{(C(1 - \alpha))(C(1 - \alpha))}{C \alpha} \] \[ 1.6 \times 10^{-5} = \frac{C^2(1 - \alpha)^2}{C \alpha} \] \[ 1.6 \times 10^{-5} = \frac{C(1 - \alpha)^2}{\alpha} \] ### Step 5: Substitute \( C \) and simplify - Since \( C = 1 \, \text{M} \): \[ 1.6 \times 10^{-5} = \frac{(1)(1 - \alpha)^2}{\alpha} \] - Rearranging gives: \[ 1.6 \times 10^{-5} \alpha = (1 - \alpha)^2 \] ### Step 6: Assume \( \alpha \) is small - Since \( K_a \) is small, we can assume \( \alpha \) is much smaller than 1, thus \( 1 - \alpha \approx 1 \): \[ 1.6 \times 10^{-5} \alpha \approx 1 \] \[ \alpha^2 \approx 1.6 \times 10^{-5} \] \[ \alpha \approx \sqrt{1.6 \times 10^{-5}} \approx 0.004 \] ### Step 7: Calculate \( [H^+] \) - The concentration of \( H^+ \) ions is: \[ [H^+] = C \alpha = 1 \times 0.004 = 0.004 \, \text{M} = 4 \times 10^{-3} \, \text{M} \] ### Final Answer The concentration of \( H^+ \) ions in the resulting solution is \( 4 \times 10^{-3} \, \text{M} \). ---
Promotional Banner