Home
Class 12
MATHS
" The value of the "lim(x rarr(1)/(sqrt(...

" The value of the "lim_(x rarr(1)/(sqrt(2)))(cos^(-1)(2 pi sqrt(1-x^(2))))/(x-(1)/(sqrt(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr1^(-))(1-sqrt(x))/((cos^(-1)x)^(2)) is

lim_(x rarr(1)/(sqrt(2)^(+)))(cos^(-1)(2x sqrt(1-x^(2))))/((x-(1)/(sqrt(2))))-lim_(x rarr(1)/(sqrt(2)^(-)))(cos^(-1)(2x sqrt(1-x^(2))))/((x-(1)/(sqrt(2))))

lim_(x rarr1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

The value of lim_(x rarr(1)/(sqrt(2)))(x-cos(sin^(-1)x))/(1-tan(sin^(-1)x)) is -(1)/(sqrt(2)) (b) (1)/(sqrt(2)) (c) sqrt(2)(d)-sqrt(2)

lim _(x to ((1)/(sqrt2))^(+))(cos ^(-1) (2x sqrt(1- x ^(2))))/((x-(1)/(sqrt2)))- lim _(x to ((1)/(sqrt2))^(-))(cos ^(-1) (2x sqrt(1-x ^(2))))/((x- (1)/(sqrt2)))=

lim_(x rarr1)(sqrt(1-cos2(x-1)))/(x-1)

The value of lim_(x rarr0)(sqrt(4+x)-sqrt(4-x))/(sin^(-1)2x)=

lim_(x rarr1)(sqrt(x^(2)+8)-sqrt(10-x^(2)))/(sqrt(x^(2)+3)-sqrt(5-x^(2)))=

Find the value of the limit lim_(x rarr0)(a^(sqrt(x))-a^((1)/(sqrt(x))))/(a^(sqrt(x))+a^((1)/(sqrt(x)))),a>1

Evaluate lim_(x rarr 1) (sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))