Home
Class 12
MATHS
If f(x)=[[ax+1, if x>=1],[x+2, if x<1]} ...

If `f(x)=[[`ax+1`, if `x>=1`],[`x+2,` if `x<1`]}` is continuous then `a`=

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=[ax^(2)-b,quad if |x| =1]

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot

If f(x) {:(=x+1", if " x le 1 ),(= 3 + ax^(2)", if "x gt 1 ) :} is continuous on R , then a = ………

If the function f(x) given by f(x)={3ax+b,quad if x>1quad if quad if x=15ax-2b,quad if x is continuous at x=-1, find the values of a and b

If f(x) {: (=x^(3)", if " x lt 1//2 ),(= ax^(2)", if " x ge 1//2 ):} is continuous at x=1/2 , then a = ……

If f(x) {:(=x^(2)-1", if "x lt 3 ),(= 2ax ", if "x le 3 ) :} is continuous at x = 3 , then a = ……

If f (x) = {{:(x + 1 , x le 1), (3 - ax^(2) ,x gt 1):} is continuous at x =1, then the value of a is

If f(x)={(ax+3",",x le 2),(a^(2)x-1"," , x gt 2):} , then the values of a for which f is continuous for all x are