Home
Class 12
MATHS
Let (x)=x+(x^(3))/(3)+(x^(5))/(5)+(x^(7)...

Let `(x)=x+(x^(3))/(3)+(x^(5))/(5)+(x^(7))/(7)+(x^(9))/(9)` and let `g(x)` be the inverse of `f(x)` then `g'''(0)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=x^(x),x in(0,oo) and let g(x) be inverse of f(x), then g(x) 'must be

Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5) and let g (x) = f ^(-1) (x). Find g'''(o).

If f(x)=x^(5)+2x^(3)+2x and g is the inverse of f then g'(-5) is equal to

Let f(x)=exp(x^(3)+x^(2)+x) for any real number and let g(x) be the inverse function of f(x) then g'(e^(3))

Let f(x)=int_(x)^(3)(dt)/(sqrt(1+t^(5))) and g be the inverse of f. Then the value of g'(0) is equal to

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

Let f(x)=log_(e)x+2x^(3)+3x^(5), where x>0 and g(x) is the inverse function of f(x) , then g'(5) is equal to:

Let f(x)=x^(3)+3x+2 and g(x) is inverse function of f(x) then the value of g'(6) is

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .