Home
Class 11
MATHS
If alpha,beta,gamma are the roots of the...

If `alpha,beta,gamma` are the roots of the equation `(x^3+x^2+x+1)=0` then `|{:(1+alpha^2," "1," "1),(" "1,1+beta^2," "1),(" "1," "1,1+gamma^2):}|` is equal to
A. 1
B. 0
C. 2
D. None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of the equation (x^3+x^2+x+1)=0 then |{:(1+alpha," "1," "1),(" "1,1+beta," "1),(" "1," "1,1+gamma):}| is equal to

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha , beta , gamma are roots of the equation x^(2)(px+q)=r(x+1) , then the value of determinant |{:(1+alpha,1,1),(1, 1+beta,1),(1,1,1+gamma):}| is

If alpha,beta,gamma are the roots of the equation 2x^(3)-5x^(2)+3x-1=0, then (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha) is

If alpha,beta,gamma are the roots of the equation,x^(3)+P_(0)x^(2)+P_(1)x+P_(2)=0 ,then (1-alpha^(2))(1-beta^(2))(1-gamma^(2)) is equal to

If alpha,beta,gamma are the roots of the equation x^(3)+2x+r=0 the equation whose roote are -alpha^(-1),-beta^(-1),-gamma^(-1) is