Home
Class 12
MATHS
int(x^(4)+x^(2)+1)/(x^(2)+x+1)dx=Ax^(3)+...

`int(x^(4)+x^(2)+1)/(x^(2)+x+1)dx=Ax^(3)+Bx^(2)+Cx+D` then `A+B+C+D` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int(ax^(3)+bx^(2)+c)/(x^(4))dx=

int(ax^(-2)+bx^(-1)+c)/(x^(-3))dx=

If int(3x ^(3)-17)e^(2x)dx={Ax^(3)+Bx^(2)+Cx+D}e^(2x)+k then

int(ax^(3)+cx)/(x^(4)+c^(2))dx

If (1)/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) then C+D

If (1)/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) then C+D=

int(1+x)^(4)+(1-x)^(4)Ax^(2)+B ln|x|+C ln|x^(2)+1|+D then

If int x^(2)e^(-2x)dx=e^(-2x)(ax^(2)+bx+c)+D