Home
Class 12
MATHS
If lim(x->-n) (x^7+n^7)/(x+n) = 7, then ...

If `lim_(x->-n) (x^7+n^7)/(x+n) = 7`, then the value of n is

Promotional Banner

Similar Questions

Explore conceptually related problems

If 7!/n!=7 then the value of n is:

If lim_(x to -a)(x^(7)+a^7)/(x+a)=7 then the value of a is

If lim_(xrarr3)(x^n3^n)/(x-3)=27n ,then the value of n is

If underset(x rarr 3)lim (x^(n) - 3^(n))/(x-3) = 27n , then the value of n is -

If lim_(x to a) (x^(7) + a^(7))/(x + a) = 7 , find the value of a.

If lim_(x to a) (x^(7) + a^(7))/(x + a) = 7 , find the value of a.

If lim_(x->2)(x^n-2^n)/(x-2)=80 and n in N ,then find the value of n.

If I_(n)=(d^(n))/(dx^(n))(x^(n)lnx) , then the value of (1)/(50)(I_(7)-7I_(6)) is equal to

If I_(n)=(d^(n))/(dx^(n))(x^(n)lnx) , then the value of (1)/(50)(I_(7)-7I_(6)) is equal to

In the expansion of (3+x/2)^(n) the coefficients of x^(7) and x^(8) are equal, then the value of n is equal to