Home
Class 12
MATHS
The value of lim(x->0^+) (sin x)^(1//lnx...

The value of `lim_(x->0^+) (sin x)^(1//lnx)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)((sin x)^((1)/(x))+((1)/(x))^(sin x)) equals

The value of lim_(x rarr0)((sin x)^((1)/(x))+((1)/(x))^(sin x)) where x>0, is 0(b)-1(c)1(d)2])

The value of Lim_(x->oo)(xln(1+lnx/x))/lnx

The value of lim_(x rarr0)[((sin(|x|))/(x)] is

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The value of lim_(x to 0) ("sinx"/x)^("sin x"/"x-sinx") is

The value of lim_(x rarr 0) ""(sin a x)/(sin b x) is :