Home
Class 12
MATHS
lim(n->oo)({x}+{2x}+{3x}+....+{nx})/n^2...

`lim_(n->oo)({x}+{2x}+{3x}+....+{nx})/n^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) ({x} + {2x} + {3x} + .... + {nx}) / (n ^ (2))

lim_ (n rarr oo) ({x} + {2x} + {3x} + ...) / (n ^ (2))

If [.] denotes the greatest integer function then find the value of lim_(n rarr oo)([x]+[2x]+...+[nx])/(n^(2))

lim_(n->oo)sin(x/2^n)/(x/2^n)

lim_(xrarroo)([x]+[2x]+[3x]+….+[nx])/(n^(2)) , where [*] denotes greatest integer function, is

Let lim_(n->oo)((x^2+2x+3+sinpix)^n-1)/((x^2+2x+3+sinpix)^n+1) . then

If [x] denotes the greatest integer less than or equal to x then +[3x]+....+[nx]lim_(n rarr oo)([x]+[2x]+[3x]+......+[nx])/(n^(2))

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is