Home
Class 11
MATHS
x=a(cos t+log tan(t)/(2)]=y=a sin t...

x=a(cos t+log tan(t)/(2)]=y=a sin t

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a(cos t+(log tan)(1)/(2)),y=a sin t then (dy)/(dx) is equal to

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2))a=(pi)/(4)

Find dy/dx , if x and y are connected parametrically by the equations (without eliminating the parameter). x = a(cost + log tan (t/2)), y = a sin t .

If x= cos t+ log tan t/2 and y = sin t, then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2) at t= (pi)/4 .

If x=a sin t and y=a(cos t+log tan(t)/(2)) find (d^(2)y)/(dx^(2))

If x = a sin t and y = a (cos t + log tan (t/2)) , find (d^2y)/(dx^2)

If x=a sin t and y=a(cos t+(log tan t)/(2)) find (d^(2)y)/(dx^(2))

x=a sin t and y= a (cos t + log "tan"(t)/(2)) then find (d^(2)y)/(dx^(2)) .

The slope of the tangent to the curve : x=a sin t, y = a(cos t+log "tan" (t)/(2)) at the point 't' is :