Home
Class 11
MATHS
2+4+6+8+....+2n=n(n+1)...

2+4+6+8+....+2n=n(n+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2 + 4 + 6 + .... + 2n = n (n + 1)

Prove the following by the method of induction for all n in N : 2 + 4 + 6 +... +2n = n(n + 1).

4+8+12+....+4n=2n(n+1)

Evalute lim_ (n rarr oo) [(1) / ((n + 1) (n + 2)) + (1) / ((n + 2) (n + 4)) + ...... + ( 1) / (6n ^ (2))]

Prove that 2.4.6.8..........2n<(n+1)^(n)*(n in N)

Sum of n terms of series 12+16+24+40+.... (A) 2(2^n -1)+8n (B) 2(2^n-1)+6n (C) 3(2^n-1)+8n (D) 4(2^n-1)+8n

If D_k=|(1, n, n),(2k, n^2+n+1,n^2+n),(2k-1,n^2,n^2+n+1)| and sum_(k=1)^n D_k=56. then n equals 4 b. 6 c. 8 d. none of these

If D_k=1nn2k n^2+n+1n^2+n2k-1n^2n^2+n+1a n dsum_(k=1)^n D_k=56. then n equals 4 b. 6 c. 8 d. none of these

If D_k=1nn2k n^2+n+1n^2+n2k-1n^2n^2+n+1a n dsum_(k=1)^n D_k=56. then n equals 4 b. 6 c. 8 d. none of these

If D_k=1nn2k n^2+n+1n^2+n2k-1n^2n^2+n+1a n dsum_(k=1)^n D_k=56. then n equals 4 b. 6 c. 8 d. none of these