Home
Class 12
MATHS
[" Let "f(x)" be continuous at "x=0" and...

[" Let "f(x)" be continuous at "x=0" and "f''(0)=4," the value of "lim_(x rarr0)(2f(x)-3f(2x)+f4x)/(x^(2))" is "2k" where "k" is "],[" equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f'(x) be continuous at x=0 and f'(0)=4 then value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

If f'(x)=k,k!=0, then the value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

If f'(2)=4 then,evaluate lim_(x rarr0)(f(1+cos x)-f(2))/(tan^(2)x)

Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

If f(x) is twice differentiable and f^('')(0) = 3 , then lim_(x rarr 0) (2f(x)-3f(2x)+f(4x))/x^(2) is

if f(x) is continuous and f((9)/(2))=(2)/(9) then the value if lim_(x rarr0)f((1-cos3x)/(x^(2))) is

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)