Home
Class 12
MATHS
lim(x->1) (px^2 + qx -2)/(x-1)=5 holds f...

`lim_(x->1) (px^2 + qx -2)/(x-1)=5` holds for ....

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(2)+x-2)/(x+3)<=(f(x))/(x^(2))<=(x^(2)+2x-1)/(x+3) hold for a certain interval containing the point x=-1 and lim_(x rarr1)f(x) then find the value of lim_(x rarr1)f(x)

lim_ (x rarr oo) (x ^ (2) + 5x + 2) / (2x ^ (2) -5x + 1)

if lim_(x rarr0)(sqrt(px^(2)+qx)-rx)=2 then

lim_(x->0)((1+5x^2)/(1+3x^2))^(1//x^2)=____

The value of lim_(x rarr1)(x^(p+1)-px+p)/((x-1)^(2)) equals

lim_(x to (1)/(2))lim (4x^(2)+8x-5)/(1-4x^(2))=

Lim_(x to oo) (px+q)/(qx+p)=l and Lim_(x to 0)(px+q)/(qx+p)=m where p,q ne 0 then lm is

If f (x) ={{:( px^(2) +q,"for " xle 1),( qx^(2) +px +r ,"for " xlgt 1 ):} where q ne 0 is derivable at x =1 ,then

If lim_(x rarr a)(px+q)/(qx+p)=l and lim_(x rarr0)(px+q)/(qx+p)=m where p,q!=0 then lm is