Home
Class 12
MATHS
lim(n->oo)1/n^4[1^2+(1^2+2^2)+....+(1...

`lim_(n->oo)1/n^4[1^2+(1^2+2^2)+....+(1^2+2^2+....+n^2)]=....` (i)`1/12` (ii)`1/16` (iii)`1/6` (iv)`0`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

underset(n to oo)lim 1/n^(4) [1^(2)+(1^(2)+2^(2))+....+(1^(2)+2^(2)+...+n^(2)]=

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_(n to oo) [ 1^2/n^3 + (2^2)/(n^3) + …+ ((n-1)^2)/(n^3)]

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

Lim_(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+1/n * sec^2 1]

lim_(n->oo) (1)/(n^(6)){(n+1)^(5)+(n+2)^(5)+...+(2n)^(5)}

lim_(n rarr oo) (1^2/(1-n^3)+2^2/(1-n^3)+...+n^2/(1-n^3))=

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =