Home
Class 12
MATHS
Write the value of lim(x->0) f(x), where...

Write the value of `lim_(x->0) f(x)`, where `f(x) = {x(sin(1/x) + log(x^2)); x!=0\ ; 0, x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate lim_(x to 0) f(x) , where f(x) = (1)/(x^(2)) for x gt 0

Calculate lim_(x to 0) f(x) , where f(x) = (1)/(x^(2)) for x gt 0

Evaluate lim_(x rarr 0) f(x), where f(x) = { (absx/x , x ne 0), (0, x=0) :}

Evaluate lim_(x rarr 0)f(x) , where f(x)= {(|x|/x,x ne 0),(0,x=0):}

The integral value of n so that lim_(x->0) f(x) where f(x) ={(sinx-x)(2sinx-ln((1+x)/(1-x)))}/x^n is a finite non-zero number

Evaluate lim_(xto0)f(x) , where f(x)={{:((|x|)/(x)","xne0),(0","x=0):}

Find lim_(xrarr0) f(x) where f(x)={{:((x)/(|x|),xne0),(0,x=0):}

Evaluate (lim_(x rarr0)f(x), where f(x)=[(|x|)/(x),x!=0,0,x=0

Find lim_(xto0)f(x) , where f(x)={{:((x)/(|x|)","xne0),(0","x=0):}

Find lim_(X to 0) f(x) where f(x) = {{:(x, x!=0),(5,x=0):}}