Home
Class 12
MATHS
sin^(-1)((1)/(sqrt(5)))+sin^(-1)((2)/(sq...

sin^(-1)((1)/(sqrt(5)))+sin^(-1)((2)/(sqrt(5)))=pi/2

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(10)))=(pi)/(4)

If alpha=sin(sin^(-1)( 1/sqrt3)/(3)),beta=cos(cos^(-1)((1)/(sqrt(5)))-sin^(-1)((2)/(sqrt(5)))) then (beta^(2))/((3 alpha-4a^(3))^(2)) is

cot (sin ^(-1)""(1)/(sqrt(5))+sin ^(-1)""(2)/(sqrt(5)))

cot((sin^(-1)1)/(sqrt(5))+(sin^(-4)2)/(sqrt(5)))

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

tan^(-1)(2)=sin^(-1)(2/(sqrt(5)))=cos^(-1)(1/(sqrt(5)))

cos^(-1)""(2)/(sqrt(5))+sin ^(-1)""(1)/(sqrt(10))=(pi)/(4)

Show that sin^(-1)(1/sqrt(10))+cos^(-1)(2/sqrt5)=pi/4 .

Consider the following statements : 1. There exists theta in(-(pi)/(2),(pi)/(2)) for which tan^(-1)(tan theta) ne theta . 2. sin^(-1)((1)/(3))-sin^(-1)((1)/(5))=sin^(-1)((2 sqrt(2)(sqrt(3)-1))/(15)) Which of the above statements is/are correct?