Home
Class 11
MATHS
" If "f(x)=|x-2|+|x-4|" show that,"f'(3)...

" If "f(x)=|x-2|+|x-4|" show that,"f'(3)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If function f(x)=|x-3|+|x-4| , then show that f(x) is not differentiable at x=3 and x=4 .

If A={:[(1,2),(2,1)]:} and f(x)=x^(2)-2x-3, show that f(A) = 0.

For the function f, f(x)=x^2-4x+7 , show that f '(5)= 2f'(7/2) .

If A = [(2,3),(-1,2)] f(x) = x^(2) - 4x + 7 show that f(A) = 0

If f(x)=(3x+2)/(4x-3) show that f(x)=f^(-1)(x)

If A = [(1,2),(2,1)], f(x) = x^(2) - 2 x - 3 , show that f(A) = 0

If f is defined by f(x)=x^(2)-4x+7, show that f'(5)=2f'((7)/(2))

If f is defined by f(x)=x^(2)-4x+7, show that f'(5)=2f'((7)/(2))

For the function f,f(x)=x^(2)-4x+7, show that f'(5)=2f'((7)/(2))

If f: R to R is defined by f(x) = 2x+|x| , then show that f(3x) -f(-x) -4x=2f(x) .