Home
Class 10
MATHS
(1)/(y)-(1)/(y-2)=3,y!=0,2...

`(1)/(y)-(1)/(y-2)=3,y!=0,2`

Promotional Banner

Similar Questions

Explore conceptually related problems

For all y ne 0, (1)/(y)+(1)/(2y)+(1)/(3y) =

For each of the following initial value problems verify that the accompanying functions is a solution. (i) x(dy)/(dx)=1, y(1)=0 => y=logx (ii) (dy)/(dx)=y , y(0)=1 => y=e^x (iii) (d^2y)/(dx^2)+y=0, y(0)=0, y^(prime)(0)=1 => y=sinx (iv) (d^2y)/(dx^2)-(dy)/(dx)=0, y(0)=2, y^(prime)(0)=1 => y=e^x+1 (v) (dy)/(dx)+y=2, y(0)=3 => y=e^(-x)+2

If ({(y+1)^(3)+(y-1)^(3)})/(((y+1)^(2)-(y-1)^(2)))=3y then the value of y+(3)/(y) is

Prove that the area of the triangle formed by the tangents at (x_(1),y_(1)),(x_(2)) "and" (x_(3),y_(3)) to the parabola y^(2)=4ax(agt0) is (1)/(16a)|(y_(1)-y_(2))(y_(2)-y_(3))(y_(3)-y_(1))| sq.units.

(2-3x)/(x)+(2-3y)/(y)+(2-3z)/(z)=0 then (1)/(x)+(1)/(y)+(1)/(z)=

(y + 1) (2y-1) - (3y-1) (y + 2)

((y^(3)-3y^(2)+5y-1)/(y-1))

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0