Home
Class 12
MATHS
" D "sqrt(2+sqrt(5)-sqrt(6-3sqrt(5)+sqrt...

" D "sqrt(2+sqrt(5)-sqrt(6-3sqrt(5)+sqrt(14-6sqrt(5))))=

Promotional Banner

Similar Questions

Explore conceptually related problems

The number N=sqrt(2+sqrt(5)-sqrt(6-3sqrt(5)+sqrt(14-6sqrt(5)))) simplifies to

The number, N>0 , N=sqrt((2+sqrt(5))-sqrt((6-3sqrt(5))+sqrt((14-6sqrt(5)))) . Then, log_(2)N is

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

(sqrt(6)+sqrt(5)+ 1/(sqrt(6)+sqrt(5)))^2

4 sin 27^(0)= 1) sqrt(5+sqrt(5))+sqrt(3-sqrt(5)) 2) sqrt(5-sqrt(5))+sqrt(3+sqrt(5) 3) sqrt(5+sqrt(5))-sqrt(3-sqrt(5)) 4) sqrt(5+sqrt(5))+sqrt(3+sqrt(5)

If a=sqrt(6+2sqrt(5))-sqrt(6-2sqrt(5)),b=^(3)sqrt(17sqrt(5)+38)-^(3)sqrt(17sqrt(5)-38) then the value of log_(a)b is equal to

(i) sqrt(12+6sqrt(3))-sqrt(3) is (ii) sqrt((6-sqrt(5))+sqrt(14+6sqrt(5)))sqrt(3+2sqrt(2))-2sqrt(2)

The value of the determinant, " "|{:(sqrt(13)+sqrt(3), 2sqrt(5), sqrt(5)), (sqrt(15)+sqrt(26), 5, sqrt(10)), (3+sqrt(65), sqrt(15), 5):}| is :a) 5(sqrt(6)-5) b) 5sqrt(3)(sqrt(6)-5) c) sqrt(5)(sqrt(6)-sqrt(3)) d) sqrt(2)(sqrt(7)-sqrt(5))

(sqrt(6)+sqrt(3))/(sqrt(5)+sqrt(2))

sqrt(10+2sqrt(6)+2sqrt(10)+2sqrt(15)) is equal to (sqrt(2)+sqrt(3)+sqrt(5))(sqrt(2)+sqrt(3)-sqrt(5))(c)(sqrt(2)+sqrt(5)-sqrt(3))(d) None of these