Home
Class 9
MATHS
sqrt((1)/(9))+0.01^(-1/2)-2^(4/3)...

sqrt((1)/(9))+0.01^(-1/2)-2^(4/3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate each of the following : (i){(81)^(1//5)}^(5//2)" "(ii)(3sqrt(64))^(-2)" "(iii)9^(3//2)+3xx4^(0)-((1)/(81))^(-1//2) (vi)sqrt((1)/(9))+(0.01)^(-1//2)-(27)^(4//3)" "(v)((125)/(64))^(2//3)+((256)/(625))^(-1//4)

Prove that: sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2

Simplify: sqrt((1)/(4))+(0.01)^(-(1)/(2))-(27)^((2)/(3))

Prove that: sqrt((1)/(4))+(0.01)^(-(1)/(2))-(27)^((2)/(3))=(3)/(2) (ii) (2^(n)+2^(n-1))/(2^(n+1)-2^(n))=(3)/(2)

Simplify: sqrt(1/4)+(0. 01)^(-1/2)-(27)^(2/3)

Evaluate: sqrt(( 1)/(4)) + (0.01) ^(-(1)/(2)) xx (5) - (27)^((2)/(3))

Prove that: (i)\ sqrt(1/4)+\ (0. 01)^(-1/2)-\ (27)^(2/3)=3/2 (ii)\ (2^n+\ 2^(n-1))/(2^(n+1)-2^n)=3/2

The value of sqrt(((0.1)^2+(0.01)^2+(0.009)^2)/((0.01)^2+(0.001)^2+(0.0009)^2)) is

If A=[{:(1,1),(0,1):}] and B=[{:(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2):}] , then ("BB"^(T)A)^(5) is equal to