Home
Class 12
MATHS
Let function F be defined as f(x)= int...

Let function F be defined as ` f(x)= int_1^x e^t/t dt x > 0 ` then the vaiue of the integral `int_1^1 e^t/(t+a) dt ` where ` a > 0 ` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let function F be defined as f(x)= int_1^x e^t/t dt x > 0 then the value of the integral int_1^1 e^t/(t+a) dt where a > 0 is

Let function F be defined as f(x)=int_(1)^(x)(e^(t))/(t)dtx>0 then the vaiue of the integral int_(1)^(1)(e^(t))/(t+a)dt where a>0 is

If f(x)=1+1/x int_1^x f(t) dt, then the value of (e^-1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If int_0^x(f(t))dt=x+int_x^1(t^2.f(t))dt+pi/4-1 , then the value of the integral int_-1^1(f(x))dx is equal to

If int_0^x f(t) dt = x + int_x^l tf (t) dt , then the value of f(1) is :

If f(x) = int_(0)^(x) t.e^(t) dt then f'(-1)=

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is