Home
Class 12
MATHS
Prove that int0^(pi/2)(dx)/(a^2cos^2x+b...

Prove that `int_0^(pi/2)(dx)/(a^2cos^2x+b^2sin^2x)=pi/(2a b)(a , b >0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_0^(pi/2)(dx)/(a^2cos^2x+b^2sin^2x)=pi/(2ab),a,b>0

Evalute : int_0^(pi)(xdx)/(a^2cos^2x+b^2sin^2x)

Prove that int_0^pi x/(a^2cos^2x+b^2sin^2x)dx=pi^2/(2ab)

int_(0)^((pi)/(2))(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)=(pi)/(2ab)(a,b>0)

Evaluate : int_0^(pi//2)(a^2cos^2x+b^2sin^2x)dx

Evaluate: int_0^(pi//2)1/((a^2cos^2x+b^2sin^2x)dx

Evaluate: int_0^pi x/(a^2cos^2x+b^2sin^2x)dx

Evaluate: int_0^pi x/(a^2cos^2x+b^2sin^2x)dx

Evaluate: int_0^(pi//2)1/((a^2cos^2x+b^2sin^2x))dx

Prove that int_(0)^(pi//2)(dx)/((a^(2) cos^(2) x +b^(2) sin^(2)x)^(2))=(pi(a^(2)+b^(2)))/(4a^(3)b^(3)) .