Home
Class 12
MATHS
For any two vectors vec a and vec b prov...

For any two vectors `vec a and vec b` prove that `abs(veca+vecb)<=abs(veca)+abs(vecb)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors vec a and vec b ,prove that (vec a xxvec b)^(2)=|vec a|^(2)|vec b|^(2)-(vec a*vec b)^(2)

for any two vectors veca and vecb , prove that abs(vecaxxvecb)^(2)+(veca.vecb)^(2)=abs(veca)^(2)abs(vecb)^(2) .

For any two vectors vec a\ a n d\ vec b prove that | vec axx vec b|^2=| (veca. veca , veca. vecb),(vecb.veca ,vecb.vecb)|

For any two vectors vec a\ a n d\ vec b prove that | vec axx vec b|^2=| (veca. veca , veca. vecb),(vecb.veca ,vecb.vecb)|

For any two vectors vec a and vec b , prove that | vec a xx vec b|^(2) = |vec a|^(2)|vec b|^(2) - (vec a . vecb)^(2) = [[veca.veca veca .vecb], [veca.vecb vec b.vecb]]

For any two vectors vec(a) and vec(b) , prove that |vec(a)+vec(b)|le|vec(a)|+|vec(b)| .

For any two vectors veca and vecb prove that |veca.vecb|<=|veca||vecb|

For any two vectors veca and vecb prove that |veca+vec|le|veca|+|vecb|

For any two vectors veca and vecb prove that |veca-vec|le|veca|+|vecb|

For any two vectors veca and vecb prove that |veca-vec|ge|veca|-|vecb|