Home
Class 12
MATHS
Find the maximum value of xyz when x/a+(...

Find the maximum value of `xyz` when `x/a+(y^2)/(b^2)+(z^3)/(c^3)=1\ (a , b , c , x , y , z >0)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum value of xyz when (x)/(1)+(y^2)/(4)+(z^3)/(27)=1 , where x,y,zgt 0 .

Find the maximum value of xyz when (x)/(1)+(y^2)/(4)+(z^3)/(27)=1 , where x,y,zgt 0 .

Find the maximum value of xyz when (x)/(1)+(y^2)/(4)+(z^3)/(27)=1 , where x,y,zgt 0 .

If =a(b-c),backslash backslash y=b(c-a),backslash backslash z-c(a-b)x=a(b-c),backslash backslash y=b(c-a),backslash backslash z-c(a-b), then the value of ((x)/(a))^(3)+((y)/(b))^(3)+((z)/(c))^(3) is (2xyz)/(abc)(b)(xyz)/(abc)(c)0(d)(3xyz)/(abc)

If x y z=0, then find the value of (a^x)^(y z)+(a^y)^(z x)+(a^z)^(x y)= (a)3 (b) 2 (c)1 (d) 0

If x y z=0, then find the value of (a^x)^(y z)+(a^y)^(z x)+(a^z)^(x y)= (a)3 (b) 2 (c)1 (d) 0

If x/(a)=y/(b)=z/(c) show that x^(3)/(a^(3))+y^(3)/(b^(3))+z^(3)/(c^(3))=(3xyz)/(abc)