Home
Class 12
MATHS
vec(a)= -i+j+2k, vec(b)=2i-j-k and vec(c...

`vec(a)= -i+j+2k`, `vec(b)=2i-j-k` and `vec(c)=-2i+j+3k` ,then the angle between `2vec(a)-vec(c)` and `vec(a)+vec(b)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(A) = 2 I + j - k , vec(B) = I + 2 j + 3 k , and vec(C ) = 6 i - 2 j - 6 k ,then the angle between (vec(A) + vec(B)) and vec(C ) will be

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

vec a = i + j + k, vec b = i-j + k, vec c = 2i + 3j-k then (vec aXvec b) Xvec c =

if vec a=2i+j+3k and vec b=3i+5j-2k then |a xx b|

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

Given the vectors vec(A)=2hat(i)+3hat(j)-hat(k) vec(B)=3hat(i)-2hat(j)-2hat(k) & " " vec(c)=phat(i)+phat(j)+2phat(k) Find the angle between (vec(A)-vec(B)) & vec(C)

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

(i) If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , show that (vec(a)+vec(b)) is perpendicular to (vec(A)-vec(b)) . (ii) If vec(a)=(5hat(i)-hat(j)-3 hat(k)) and vec(b)=(hat(i)+3hat(j)-5hat(k)) then show that (vec(a)+vec(b)) and (vec(a)-vec(b)) are orthogonal.

vec a=2vec i+3vec j-vec k,vec b=-vec i+2vec j-4vec k and vec c=vec i+vec j+vec k then find thevalue of (vec a xxvec b)*(vec a xxvec c)