Home
Class 12
MATHS
the value of the function f(x)=(x^2-3x+...

the value of the function `f(x)=(x^2-3x+2)/(x^2+x-6)` lies in the interval.

Text Solution

Verified by Experts

f(x) is defined if `x^2+x−6!=0`
`(x+3)(x−2)!=0=>x!=−3,2`
so, Domain of `f(x)=(−oo,oo)/{−3,2}`
Let `y=(x^2−3x+2)/(x^2+x−6)`
​=`x^2y+xy−6y` =`x^2−3x+2`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is ?

At what values of a do all the zeroes of the function f(x)=(a-2)x^(2)+2ax+a+3 lies on the interval (-2,1)

The greatest value of the function f(x)=2. 3^(3x)-3^(2x). 4+2. 3^x in the interval [-1,1] is

The greatest value of the function f(x)=2.3^(3x)-3^(2x).4+2.3^(x) in the interval [-1,1] is

The mean value of the function f(x) = (1)/( x^2 + x) on the interval [1, 3//2] is

Find the value of c in Mean Value theorem for the function f(x)=(2x+3)/(3x-2) in the interval [1,5] .

Verify Rolle's theorem for the function f(x)=x^(3)-3x^(2)+2x in the interval [0,2] .

Verify Rolle's theorem for the function f(x)=x^(3)-3x^(2)+2x in the interval [0,2] .

Verify Rolle's theorem for the function f(x)=x^(3)-3x^(2)+2x in the interval [0,2] .

Find the domain of real function f if f(x)=(x^2-3x+2)/(x^2+x-6)